

Lyman-alpha forest and Primordial Non-gaussianities (fnl)

with collaborators: Anze Slosar, Uros Seljak and Vincent Desjacques

Shirley Ho Lawrence Berkeley Lab 18 Sep 2009, Paris-Berkeley meeting

Outline

- What is fnl?
- What have we done with LSS and fnl?
- What can we do with Lya and fnl?
 - -Lya flux spectra with different non-gaussianities
 - —How about with redshift space distortions?
- Things to worry about:
 - **—UV background fluctuations**
 - -Continuum subtractions ...

Primordial potential (assumed to be gaussian random field)

What is fnl? —Non-gaussianities in Early Universe

parameterize how much non-linear corrections are there to the potential

$$\Phi = \phi + f_N L \phi^2$$

Primordial potential (assumed to be gaussian random field)

BERKELEY

Inflation

What have we done with LSS and fnl? —Non-gaussianities in Early Universe

BERKELEY LA

• Primordial Non-gaussianities via Lyman alpha forest

What can we do with Lya and fnl?

What can we do with Lya and fnl?

Other things we should worry about:

- UV background fluctuations
- continuum subtractions
- others?
- There maybe easy solutions:
 - —Using multiple tracers!
 - —Quasars, LRGs, Lyman-alpha forest (but in different ways)

Dark Energy via Baryon Acoustic Oscillations

-the correlation function:

$$\xi_f(r) = <\delta_f(\hat{x})\delta_f(\hat{x}+\hat{r})>$$

Dark Energy via Baryon Acoustic Oscillations

Dark Energy via Baryon Acoustic Oscillations

- We can probe early universe with Lya forest!
- z-space distortions? not a problem!
- Other things Lya forest can do?
 - —BAO -> Dark energy at high-z
 - —neutrino mass constraints (small scale P(k))
 —IGM physics...
- We need to worry about systematics such as: —UV background fluctuations
 - -continuum fluctuations, etc

Checking my Lya-P(k)

What does fnl do?

Data/method	Measurements $f_{\rm NL}, 1-2\sigma$ errors	reference
Photo LBC-bias	84+54+85	Slosar et al. 2008
1 1000 1100-0103	04-101-331	5105ar et al. 2000
Spectro LRG–bias	$93^{+74+139}_{-83-191}$	Slosar et al. 2008
QSO - bias	11^{+26+47}_{-37-77}	Slosar et al. 2008
combined	37^{+23+42}_{-26-57}	Slosar et al. 2008
NVSS_ISW	140+647+755	Slosar et al 2008
147.00-1044	$^{140}-337-1157$	5108ar et al. 2008
NVSS-ISW	$272\pm127~(2\text{-}\sigma)$	Afshordi&Tolley 2008
	Forecasts	
Data/method	$\Delta f_{ m NL}(1-\sigma)$	reference
BOSS-bias	18	Carbone et al 2008
ADEPT/Euclid-bias	1.5	Carbone et al. 2008
PANNStarrs-bias	3.5	Carbone et al. 2008
LSST-bias	0.7	Carbone et al. 2008
LSST-ISW	10.	Afshordi&Tollev 2008

What does fnl do?

What about z-space distortions?

 $P(k) [Mpc/h]^3$

.....

BERKELEY