Imaging & Spectroscopy Complementarity Optimising WL & z-surveys of DE space missions

Jean-Paul Kneib,

<u>Stéphanie Jouvel, Julien Zoubian</u>, Anne Ealet, Olivier Ilbert, Carlo Schimd, B. Milliard (LAM) Gary Bernstein (Upenn), ...

Outline

- Motivation
- Photometric redshift
- Need for spectroscopy
- Optimizing Weak Lensing surveys
- Slitless, fixed-mask, or DMD-slit spectroscopy?
- Conclusion

- First « good » world map in the XVIIIs century
- « Perfect » maps nowadays with space Earth observatories
- Deep understanding of our planet

- First « good » world map in the XVIIIs century
- « Perfect » maps nowadays with space Earth observatories
- Deep understanding of our planet

- First « good » world map in the XVIIIs century
- « Perfect » maps nowadays with space Earth observatories
- Deep understanding of our planet

- First « good » world map in the XVIIIs century
- « Perfect » maps nowadays with space Earth observatories
- Deep understanding of our planet

Understanding Our Universe

goals for "COSMOS-METERS"

- What is its mass content (3D map)?
- What is the nature of Dark Matter?
- What is the geometry of the Universe?
- What drives the acceleration of the expansion?
- What is the nature of Dark Energy?

HOW?

- Masses through lensing (measuring shape & redshifts of <u>faint galaxies</u>) [Cosmic Shear, Clusters ...]
- 3D mapping of galaxies (<u>position, mass and redshift</u>) [BAO, redshift distorsion, cluster dyanmics ...]
- plus other techniques (SN, SL) not discussed here ...

WL & Spectroscopy

- Combine WL & Spectroscopic information: investigate position of galaxies in large scale structures
- Frame-work: Halo Model
- Can put stringent constraints on the mass distribution but also Cosmology

WL & Spectroscopy

- Combining information from galaxy distribution (Correlation function, Luminosity function, Galaxy-galaxy lensing)
- Probe Mass/Light (SDSS based)
- Probe Cosmology (with lensing)

Cacciato/Van den Bosch et al 2009

Our Universe Revealed by its Galaxies

- Star-light of galaxies allow to pinpoint their location and their "shape" with imaging technique (=> high resolution requirement)
- Galaxy distance comes from analysing the <u>spectral information</u> of the star-light:
 - <u>Photometric redshift</u>: a very low resolution spectroscopic information (R~3-5)
 - <u>Spectroscopic redshift</u>: detailed estimate with R~200 or better

- I. **Purely adaptative** (e.g. Neural network)
 - > no need to deal with zero-points, filters, etc (although need uniform data)
 - > need a large and representative spec-z sample

2. Template fitting

- > need a perfect knowledge of zero-points, filters, ... and the best template matching your data
- > need of a spec-z sample more limited: to check photometric calibration (shallow z-survey) - to define the templates (deep z-survey, matching the survey depth)

A lot of possible fine-tuning

set of templates

- calibration of photometric zeropoints
- with spec-z
- emission line contribution
- combine attenuation curves
- possible prior on the zdistribution
- different way of analyzing the PDF

Physical output : stellar masses, LIR, SFR ...

The standard χ^2 method -Results

The standard χ^2 method -Results

Need for spectroscopic calibration

Method successful to remove systematic trends

u* +0.019

g'-0.079

- r' -0.002
- i' 0
- z' -0.008

Importance of the zero-point calibration

Further improvement of the templates

CFHT-LS vs.VVDS Ultra-deep

CFHT-LS vs.VVDS Ultra-deep

COSMOS photometric redshift

COSMOS photometric redshift

zCOSMOS faint **VIMOS/VLT** (Lilly et al. 2009) up to i'<25 For 1.5<z<3 4% redshift accuracy 13% of failure Need better IR to

> improve these numbers

Optimizing photometric redshift for WL surveys

Weak-Lensing Requirement

Shape measurement :

galaxies are small

HOW-TO: Measure PSF from stars and galaxy shape

Requires a PSF smaller than galaxies with good sampling :

large mirror diameter, large number of pixels.

Photometric redshift:

galaxies are faint

HOW-TO: Measure color gradient with maximal S/N

Requires wide wavelength coverage (visible+NIR) with high S/N:

Large mirror diameter, many filters.

BUT for a fixed amount of time and at minimal cost ! Need to optimize these surveys parameters for WL goals.

Known Galaxy Properties from Deep Surveys

Imaging:

the COSMOS survey

- 2deg² (representative)
- 30 photometric bands from UV to IR with HST, Galex, Spitzer, Subaru, VLA, NOAO
- HST/ACS I band observation: galaxy sizes & shapes

Spectroscopy:

the VVDS "Deep" survey

- VIRMOS/VLT deep spectroscopic survey on ~0.5 sq.deg
- ~ 9000 spectra from 0<z<5 to I(AB)~24

COSMOS Mock Catalog (CMC)

Construction using the properties of the COSMOS-ACS WL catalog using :

- photometric redshift distribution

30 photometric bands calibrated with spectroscopic redshift :

- > zCOSMOS bright (I~22 AB)
 - > zCOSMOS faint (I~25 AB)
 - > MIPS-spectro-z sample
- *best-fit template* from this photoz distribution

- galaxy size measured by SExtractor from Leauthaud et al 2007

Validation of the CMC using :

- GOODS N&S visible
- UDF visible + jh band
- VVDS Ks band + spectro-z
- GOODS-MUSIC Ks band

http://lamwws.oamp.fr/cosmowiki/RealisticSpectroPhotCat

COSMOS Mock Catalog (CMC)

Emission line prediction :

UV-OII relation, Kennicutt et al 1998

Validation of the redshift distribution and emission line fluxes using the VVDS-DEEP I~24 AB (Lamareille et al 2008)

http://lamwws.oamp.fr/cosmowiki/RealisticSpectroPhotCat

Jouvel et al. 2009

Number of galaxies vs. Size & Magnitude

Ground: Going deeper than *I~25 AB* does not increase the number of « usable galaxies » We are size limited

Space: Going deeper means more galaxies usable for WL. Smaller the PSF, larger is the number of galaxies. We are S/N limited

Photoz and telescope design

We want to optimize photo-z for :

- Maximum galaxies
- Lowest errors
- Lowest catastrophic redshift rate

by choosing :

- Number of filters
- Resolution of filters (shape)
- Do we want Uband ?

Answer using simulated surveys

We include all detector noises and instrument characteristics (exposure time, mirror size, efficiencies ...)

Optimizing Photo-z : Filter Resolution

High Resolution= Narrow Filter

Low Resolution= Wide Filter

Optimizing: Minimizing Photo-z Dispersion and Catastrophic Redshifts

Optimizing Photo-z : U-band photometry removes catastrophic redshifts

FoM : Most Important parameters for cosmological survey

Equations :

$$F_{\alpha\beta} = \underbrace{f_{\text{sky}}}_{l} \sum_{l} \frac{(2l+1)\Delta l}{2} \operatorname{Tr}\left[D_{l\alpha}\widetilde{C}_{l}^{-1}D_{l\beta}\widetilde{C}_{l}^{-1}\right]$$

Amara et al 2007

redshift distribution (e.g. Smail et al) :

$$P(z) = z^{\alpha} \exp\left[-\left(\frac{z}{z_0}\right)^{\beta}\right]$$

divided in tomographic bins

FOM Calculation

Parameters :

- Survey area:
 - Exposure time, FOV,
 Nbr of filters, survey
 efficiency
- Galaxy Number density (WL usable) :
 - Photo-z errors,
 1.25xPSF size,
 - S/N>10
- Redshift distribution, Median redshift

FoM : Exposure time & photoz errors

Assumption: 1.5m diameter, fixed FOV (0.5 sq.deg), fixed survey time (1 yr). *Compute FOM (icosmo) vs. Texp.(assuming 4 exp.) for different number of filters*

Conclusion: *Optimal Texp : 150-200sec* Above $\delta z \sim 0.05(1+z)$ the galaxy number density increase do not compensate the decrease of the photo-z quality.

Beware: catastrophic redshift not yet included in the FoM

FoM : Optimizing the Number of

Assumption: 1.5m diameter, fixed FOV (0.5 sq.deg), fixec survey time (1 yr). *Compute FOM (icosmo) vs. Texp.(assuming 4 exp.) for different number of filters*

Conclusion: 7 (ground Uband reaching the spacesensitivity) or 8 filters observing strategy are better than 6 filters observing strategy

Beware: catastrophic redshif not yet included in the FoM calculation

Need for Spectroscopic Redshift

- Photometric redshift calibration (WL interest) [low-density over the full survey, very-deep for faintest galaxies]
- BAO [low-density]
- redshift distorsion [high-density]
- cluster redshift and velocities [high density]
- lensing of structures (galaxies, groups, clusters ...)
 [high-density]

Spectroscopic Success Rate : Validation and forecast

Flux detection limits:

Space is very competitive in the infrared

Validation of estimates: reproducing the VVDS SSR

Forecast :

DEEP visible/NIR space survey (Photoz calibration)
WIDE-NIR space survey (BAO like)
Ground survey can be similarly forecasted.

DEEP-vis-NIR : I~27 0<z<3.5 60 gal/arcmin2

WIDE-NIR : H ~22 0.5<*z*<1.5 5gal/arcmin2

Optimizing Redshift Surveys for space Dark Energy missions

 Aim: Gets lots of redshift over all sky (BAO & redshift distorsion probe)

- Slitless (sky background limited => pixel size, telscope aperture)
- Fixed Mask (limit sky, but limit also number of galaxies)
- DMDs (ultimate technique, feasible?)

Slitless spectroscopy

All spectra in the field are observed during the same time

Direct image

46

Slitless Image

47

Spectro image without sky background

48

Realistic simulation (EUCLID parameters)

Dispersion direction

- Changing the dispersion direction, reduce spectra overlap [move the telescope - or rotating grism]
- Specially efficient for deep spectroscopy

Fixed Mask

Simulation input

- Instrument parameters (EUCLID like): RN=5e, DC: 0.01e/s, pixel: 0.47", ExpTime=1500sec, ...
- Zodiacal light
- Cosmos Mock Catalogue with modeled emission lines

Simulation output - with sky background

Simulation output - background removed

Data Reduction

2D extracted spectra

Spectroscopic efficiency

Magnitude distribution as a function of f(sky)

- Decreasing the visible sky fraction, reduced the sky background, but the total number of targeted sources
- From slitless to 50%, typical gain of I magnitude, to 90%, typical gain of 2 magnitude

Spectroscopic Success Rate

 at 50% of visible sky, the main increase is the depth, and redshift distribution

 at 10% of visible sky, the main gain is the greater SSR and wider redshift distribution

Fixed Mask vs. Slitless

- Fixed Mask are easy to implement (but need some special optical design of the instrument)
- They provide an easy route to go deeper
- at 50% of visible sky, the number of measured redshift is similar to slitless spectroscopy but at fainter magnitude limits, and higher-z
- smaller % of visible sky, means less redshift
- TBD: explore the gain for deeper exposure time
- TBD: go over DMD performances

Conclusion

- We have developed a realistic mock galaxy catalogue based on our knowledge of galaxy surveys (Jouvel et al 2009)
- We used this catalogue:
 - To define the best filter system for photo-z (R~3, U-band critical)
 - To forecast the FOM of WL cosmological surveys (7-8 filters seems better than 6-filter survey - 1.5m telescope, ~200 sec exposure) - but need to properly account for catastrophic errors, explore ground+space strategies.
 - To explore efficiency of slitless, fixed mask, (and soon DMDs) spectroscopic surveys
- Lot more (new) science if both imaging and spectroscopy are matching up

Digital Micromirror Devices (DMDs)

- EUCLID proposed design (conducted at LAM):
- 4 spectrograph 0.77"/DMD pixel ~0.5 sq.degree sample 30% of galaxies with 90% SSR (H<22)

- Square mirrors, 14 x 14 µm
- Up to 2048×1080 elements
- Tilt angle ±12°

DMD field projected onto the detector (dark backgroud). All DMDs turned off except those of targets

Spectra of the selected targets

Overlap

Overlap

