Recent Results from the Nearby Supernova Factory

Stephen Bailey

LPNHE, Paris for the Nearby Supernova Factory

Paris-Berkeley Cosmology Workshop 2009

G. Aldering², P. Antilogus¹, C. Aragon², S.B.¹, C. Baltay³, S. Bongard¹, C. Buton⁴,
M. Childress², N. Chotard⁴, Y. Copin⁴, D. Fouchez⁶, E. Gangler⁴, M. Kowalski⁷,
S. Loken², P. Nugent², K. Paesch⁷, R. Pain¹, E. Pecontal⁵, R. Pereira⁴,
S. Perlmutter², D. Rabinowitz³, G. Rigaudier⁵, P. Ripoche¹, K. Runge², R. Scalzo³,
G. Smadja⁴, H. Swift², C. Tao⁶, R.C. Thomas², C. Wu¹, J. Zylberberg²

¹LPNHE (Paris), ²LBL (Berkeley), ³Yale (New Haven), ⁴IPNL (Lyon), ⁵CRAL (Lyon), ⁶CPPM (Marsaille), ⁴Uni Bonn

Outline

- Why Nearby Supernovae?
 - Overview for non-SN folks
- The Nearby Supernova Factory
 - SN search
 - Followup instrument (SNIFS) and methodology
- Recent Results
- The Future

Why Nearby Supernovae?

- Cosmology differences are degenerate with absolute normalization of SNe Ia
- Low-z sample breaks this degeneracy
- Current systematics are limited by low-z sample and its intercalibration to high-z sample
 - Quality of current low-z data (esp. U-band)
 - Different filters and calibrations
 - SN models
 - Evolution
 - Bulk-flow and redshift range

Example Systematics

TABLE 8

Systematic uncertainties in w for the salt-ii analysis of the FwCDM model, including the BAO+CMB prior. +/- values indicate asymmetric uncertainties.

		Uncertainty on w for Sample:					
	Source of Uncertainty	a	b	С	d	е	f
	Rest frame U-band	-0.100	0.104	-0.133	0.104	0.104	0.104
\rightarrow	z_{\min} cut for Nearby sample	0.050	0.030	0.050	0.030	0.030	0.030
	Galactic Extinction	0.021	0.012	0.004	0.016	0.022	0.023
	SALT–II SN IA MODEL PARAMETERS						
	retraining : include SDSS data	0.008	0.005	0.017	0.011	0.005	0.005
	dispersions of SALT-II surfaces	0.001	0.003	0.002	0.006	0.006	0.004
	β -variation with redshift	0.000	+0.073	0.000	+0.045	+0.013	+0.036
	SELECTION EFFICIENCY						
	simulated bias	0.020	0.011	0.009	0.002	0.001	0.012
	CALIBRATION						
\rightarrow	0.01 mag errors in U, B, V, R, I	0.029	0.030	0.027	0.022	0.020	0.022
	shifted Bessel90 filters	0.000	0.000	0.015	0.010	0.008	0.013
	vary SDSS AB offsets for g, r, i	0.018	0.037	0.031	0.015	0.016	0.000
	vary ESSENCE $R - I$ color zeropoint	0.000	0.035	0.000	0.036	0.021	0.025
	vary SNLS g, r, i, z zeropoints	0.000	0.057	0.000	0.046	0.030	0.043
	vary HST zeropoints	0.000	0.000	0.000	0.000	0.015	0.000
	Total	$+0.06 \\ -0.12$	$+0.15 \\ -0.14$	$+0.07 \\ -0.15$	$+0.13 \\ -0.13$	$+0.12 \\ -0.12$	$+0.13 \\ -0.12$

SDSS Kessler et al. (2009)

Fixable with a better low-z sample

Nearby Supernova Factory

Stephen Bailey – LPNHE Paris – SNfactory

The Search

- 28 months during 2005 2008
- Palomar Oschin 1.2m
 - 112 CCD QUEST-II camera
 - ~9 square degree field-of-view
 - Joint with asteroid / NEO searches
- Search low-z like high-z
 - Wide field impartial search
 - Representative distribution of host galaxy environments
- Pioneering work in large area, large data SN searches
 - PTF, PanSTARRS, LSST, ...
 - e.g. machine learning algorithms to identify SN candidates

Image: Caltech Archives

1000+ SN Discoveries

2π coverage

Over 1000 SN discoveries of all types

Stephen Bailey – LPNHE Paris – SNfactory

visits

Classifications

	SNfactory	Others	Total
All Typed	624	71	695
SNe la	396	50	446
Follow-up	147	38	186
Processed	62	12	74

Classifications

	SNfactory	Others	Total
All Typed	624	71	695
SNe la	396	50	446
Follow-up	147	38	186
Processed	62	12	74

SNe la

	SNfactory	Others	Total
All Typed	624	71	695
SNe la	396	50	446
Follow-up	147	38	186
Processed	62	12	74

visits

Detailed Followup

	SNfactory	Others	Total
All Typed	624	71	695
SNe la	396	50	446
Follow-up	147	38	186
Processed	62	12	74

Followup Methodology

Most SN programs:

- Oriented toward broad-band photometry
- Some spectroscopy, mainly for redshift and confirming Type Ia
- Difficulties:
 - Inter-program calibrations (different filters and redshift coverage)
 - Model building with sparse non-flux calibrated spectra

New Paradigm:

- Flux-calibrated spectra = spectrophotometry
- Spectrophotometry at every epoch
- Benefits
 - Synthesize any filter/redshift range you want
 - Dense sample of spectra for model building and understanding SNe

Motivations for Spectrophotometry

Followup Instrument

- SNIFS: SuperNova Integral Field Spectrometer
- Custom designed and built by SNfactory for nearby SNe
- Remotely operated every 2-3 nights on UH 2.2m on Mauna Kea

SuperNova Integral Field Spectrometer (SNIFS)

Stephen Bailey – LPNHE Paris – SNfactory

16

Stephen Bailey – LPNHE Paris – SNfactory

16

Stephen Bailey – LPNHE Paris – SNfactory

Each SN: Spectral Timeseries

Calibration

- SNe calibrated to network of standard stars
 - CalSpec reference flux-calibrated spectra
 - Includes BD+174708 (fundamental calibrator for SDSS, SNLS3)
 - Allows nightly extinction solutions for airmass corrections
- Non-photometric nights
 - Photometric channel extinction monitoring corrections
- Primary difficulty
 - Extraction of SN from complicated host background structure

Galaxy Reconstruction Simulated Data

Analogous to photometry methods, but with spectra

Sébastien Bongard

Galaxy Reconstruction Real Data

Calibration: Nightly Extinction

Hubble Diagram

Prepared by David Rubin using SALT2 and "Union" (Kowalski et al 2008) framework ~40% of SNfactory followup sample

Hubble Diagram

Cosmology parameters still blinded ... work in progress ...

Bulk Flow Systematics

SNfactory sample optimizes balance between cosmological fit lever arm (z) and bulk flow systematic (volume of survey)

SNfactory Redshift Range

SNfactory Redshift Range

Histograms: Rui Pereira

SNfactory Redshift Range

Stephen Bailey – LPNHE Paris – SNfactory

Benefits from SNfactory Sample

Short Term

- Bulk flow systematic
 - Redshift range and area covered optimizes fit lever arm vs. systematic from coherent bulk flows
- Sample composition bias
 - Search is deeper than followup: less Malmquist bias (to be quantified)
 - Untargeted search: representative host sample diversity
- Low/High-z sample inter-calibration
 - SNfactory sample directly calibrated to BD+174708
 - Ability to synthesize same filters as high-z samples
- Somewhat longer term
 - Full K-correctionless Hubble diagram fits
 - New SN spectral timeseries templates
 - Better understanding of SNe Ia ...

We get these benefits even if we just add our data to the Hubble diagram with standard methods

Discussed in working groups at this workshop

Unique dataset enables improvements beyond standard methods

Two Classic Corrections

= -0.68

Classic corrections

- Color: Bluer = Brighter
- Lightcurve shape: Broader = Brighter
- $\sim 40\% \rightarrow \sim 16 20\%$ scatter
- Can we do better with spectral info?
 - Search correlations of features with residuals

Stephen Bailey – LPNHE Paris – SNfactory

Previous Spectral Metrics

Generalized Flux Ratios

Spectra sorted by SALT color

- Consider all flux ratio combos, not just ratios of known peaks
- Search for correlations with uncorrected Hubble residuals
- SNfactory spectra
 - Flux calibrated
 - Within ±2.5 days of peak brightness
- Training and Validation Datasets
 - Search with training set (28 SNe)
 - Cross check w/ validation set (30 SNe)
 - Minimizes bias and confirms results

Flux Ratio Correlations

Stephen Bailey – LPNHE Paris – SNfactory

Flux Ratio Correlations

Stephen Bailey – LPNHE Paris – SNfactory

Nearby Hubble Diagram

Nearby Hubble Diagram

SALT2 corrects $0.40 \rightarrow 0.16$ mag What if we fit with R_{643/442} instead?

Nearby Hubble Diagram

Flux Ratios standardize SNe Ia better than x₁ and c combined

Bailey et al 2009 A&A Letters arXiv: 0905.0340

Hubble Residuals				
Sample	X1, C			
Training	0.130	0.154		
Validation	0.134	0.171		
All	0.128	0.161		

Hubble Residuals

Literature SNe Comparison

- Literature SNe from Matheson, with photometry from Jha and Hicken
- Overall, supports our results within the resolution of the data
- One outlier (99cl)
 known to be unusual:
 - Very heavily reddened
 - Time variable sodium absorption
 - Very low R_V value

Related Work: vsi and Color

- Slope of color correction related to Si velocity v_{Si}
- Separating high/normal v_{Si}
 significantly improves scatter
 (0.178 → 0.125 mag)

X.Wang et al. 2009 ApJ Letters, arXiv:0906.1616

Improved distances to Type Ia Supernovae with Two Spectroscopic Subclasses

K-correctionless Hubble Diagram

- Synthesize photometry on a redshift-dependent filter-set
- One filter integrates the same spectral range on all SNe
- Minimize systematic errors due to the hight curve fitter spectral model (SALT2)

K-correctionless Cosmology

- Custom calibrate each high-z SN with low-z SNe using
 - same filters
 - same restframe wavelengths
- Apples-to-apples comparisons for cosmology
- Cancels many fit biases
- Work in progress...

1.0

 $\times 10^4$

Classic Metric Studies

- Complete study underway of classic metrics (R_{Si}, EW(4000), etc.)
 - Ability to standardize SNe Ia
 - Covariance with each other and with stretch and color
- Example: EW(Si_{II} 4000)

	Color cut						
60	Correction	None	c & x1	c & EWSill 4000	None	c & x1	c & EWSill 4000
45				7000			4000
37	RMS	0.406	0.161	0.164	0.217	0.153	0.123
03	nMAD	0.264	0.159	0.177	0.243	0.139	0.148
년 007 00	Standard deviation and normalized median absolute deviation.						

EW(Si_{II} 4000) + Color competitive with x1 + Color (cp Bronder EW alone)

Nicolas Chotard

Stephen Bailey – LPNHE Paris – SNfactory

Double Degenerates?

Modeling the Physics of SNe la

- Map underlying physics to observed features
 - Abundances, densities, KE
 - Stretch, color
 - Spectral features
- Data-driven modeling
 - New methods developed to handle the richness of data

Rollin Thomas

The Future

- Cosmology
 - Our highest priority
- Additional spectral metrics
 - Full study of classic metrics
 - New metric studies underway
- New SN spectral timeseries templates
- SN Modeling
- Studies of individual SNe
- and much more

- Monday: Saul's SN Defining the Issues talk
 - Some choices for future can be based upon agreed upon facts
 - Other choices are currently based upon our scientific tastes

- Monday: Saul's SN Defining the Issues talk
 - Some choices for future can be based upon agreed upon facts
 - Other choices are currently based upon our scientific tastes
- Yesterday's SN survey design discussion
 - Generally agreed on photometry, diverged on spectroscopy
 - Exactly how useful are spectra beyond typing and redshift?
 - Ariel: we need to do our homework

- Monday: Saul's SN Defining the Issues talk
 - Some choices for future can be based upon agreed upon facts
 - Other choices are currently based upon our scientific tastes
- Yesterday's SN survey design discussion
 - Generally agreed on photometry, diverged on spectroscopy
 - Exactly how useful are spectra beyond typing and redshift?
 - Ariel: we need to do our homework
- SNfactory is doing that homework
 - e.g. Flux ratios are first quantitative evidence of how good spectra can outperform multi-color lightcurves on the same data
 - Just the first of multiple related analyses
 - Calibration methods: classic metrics, other new metrics
 - Likes-to-likes: calibrate SNe with other SNe that look most similar
 - Subsamples: split 91T-like from 91bg-like from normal from ...

Image: D. Laferry