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Clusters

• Clusters are one of the primary DETF dark 
energy probes

• Growth of structure

• Dynamical test of dark energy 

• Tests gravity (e.g., γg)

• Volume element

• Geometrical test of dark energy

Surveys: millimeter (SZ), Optical/IR,  X-ray



Vantage Point

• Clusters are astrophysical objects (like others) 
whose ultimate quantitative utility depends on 
how many parameters are needed to 
standardize them for cosmological studies.

• This is the focal point from which emanate the 
many of the key issues that we will discuss.

• The ultimate answer is a point of fundamental 
research



The Method
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Clusters as a DE Probe

Abundance evolution (“the counts”)

Geometry

Mass function: 
growth

Catalog of detected clusters (dark matter halos) with 
M>Mdet

ID z M
... ... ...
... ... ...

➡Dark matter sector understood
➡Mass function well-modeled by 
N-body simulations (e.g., Jenkins et 
al. (2001) - Millennium Simulation)
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Clusters as DE Probe

➡Convolution with observable-mass relation

➡Distribution of what we observe in terms 
of mass (what we want!)

ΘC       =Cosmological parameters
ΘN       =Cluster & other nuisance parameters

More generally, we observe a mass proxy Mo and must deal with:
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4 Critical Issues

• 2 Surveying issues - depend on cluster detection 
technique

1. Selection function (sample completeness)
2. Contamination by false detections

• Mass measurement - depends on chosen mass 
proxy

3. Mo-Mass relation = probability distribution

• Redshifts

4. Follow-up (SZ, X-ray); photo-z errors (optical/IR)



Sources of Systematics

• Instrumental effects

• e.g., foregrounds (SZ), PSF (X-ray), etc.

• Algorithms

• e.g., detection methods: matched filters, wavelets, ...

• Astrophysics

• e.g., observable-mass relation and its evolution

Quantified by nuisance parameters ΘN



General Approach

• Choose cluster catalog construction method

➡ Identify nuisance parameters ΘN, informed by theory & 
simulation: selection function, contamination, P

➡Use additional observations to put priors on nuisance 
parameters (e.g., shear mass measurements, galaxy 
clustering)
➡ Calibration with external data sets

➡ Fit observed cluster distribution and  to estimate 
cosmological and nuisance parameters, ΘN & ΘC, 
simultaneously

➡ Self-calibration (e.g., Lima & Hu 2004, 2005, Majumbdar & Mohr 
2004)



State-of-the-Art: example
400 sq. deg. survey:  Burenin et al. 2007, Vihklinin et al. 2009a,b

ROSAT clusters re-observed in detail with Chandra to get good mass proxy 
measurements.  Two redshift bins:
•<z>=0.05, 49 clusters from RASS
•<z>=0.55, 37 clusters from PSPC pointings (400 sq deg).
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Figure 2. Illustration of sensitivity of the cluster mass function to the cosmological model. In the left panel, we show the measured mass function and predicted
models (with only the overall normalization at z = 0 adjusted) computed for a cosmology which is close to our best-fit model. The low-z mass function is reproduced
from Figure 1, which for the high-z cluster we show only the most distant subsample (z > 0.55) to better illustrate the effects. In the right panel, both the data and the
models are computed for a cosmology with ΩΛ = 0. Both the model and the data at high redshifts are changed relative to the ΩΛ = 0.75 case. The measured mass
function is changed because it is derived for a different distance–redshift relation. The model is changed because the predicted growth of structure and overdensity
thresholds corresponding to ∆crit = 500 are different. When the overall model normalization is adjusted to the low-z mass function, the predicted number density of
z > 0.55 clusters is in strong disagreement with the data, and therefore this combination of ΩM and ΩΛ can be rejected.

insensitive to variations of n within the WMAP measurement
uncertainties and even to setting n = 1.

Once the combined likelihood as a function of cosmological
parameters is available, we use the quantity −2 ln L, whose
statistical properties are equivalent to the χ2 distribution (Cash
1979), to find the best-fit parameters and confidence intervals.

In addition to statistical uncertainties, we also consider
different sources of systematics. We do not include systematic
errors in the likelihood function but instead refit parameters with
the relations affected by systematics varied within the estimated
1σ uncertainties. This approach allows as not only to estimate
how the confidence intervals are expanded from combination of
all systematic errors, but also to track the most important source
of uncertainty for each case. A full analysis of systematic errors
is presented in Section 8.4 for the case of constraints on constant
w in a flat universe; in other cases the systematic uncertainties
contribute approximately the same fraction of the total error
budget. We also verified that in the constant w case, our method
of estimating the systematic errors produces the results which
are very close to the more accurate procedure using the Markov
chain analysis.

5. CONSTRAINTS FROM THE SHAPE OF THE LOCAL
MASS FUNCTION: ΩMh

The shape of the cluster mass function reflects the shape of
the linear power spectrum in the relevant range of scales, ap-
proximately 10 h−1 Mpc in our case. This shape, for a reason-
able range of parameters in the CDM cosmology is controlled
(Bardeen et al. 1986) mostly by the quantity ΩMh. It is useful
to consider constraints on this combination separately because
they are nearly independent of the rest of the cosmological pa-
rameters we are trying to measure with the cluster data.

Fixing the primordial power-spectrum index to the WMAP
value, n = 0.95, the fit to the local mass function11 gives ΩMh =

11 Including the high-redshift data, we obtain a consistent value,
ΩMh = 0.198 ± 0.022. Combined with the HST prior on h, this leads to a
measurement of ΩM = 0.275 ± 0.043. However, using the high-z data makes

0.184 ± 0.024 (purely statistical 68% CL uncertainties). The
best-fit value is degenerate with the assumed primordial power-
spectrum index, and the variation approximately follows the
relation ∆ΩMh = −0.31∆n. The variations of n within the range
constrained by the WMAP data, ±0.015, lead to negligibly small
changes in our derived ΩMh.

An additional source of statistical uncertainty is that related to
the derivation of the L–M relation, since we derive this relation
from the same set of clusters. Uncertainties in the L–M relation
are translated into those of the survey volume and hence the
cluster mass function. Most of our cosmological constraints are
primarily sensitive to the cluster number density near the median
mass of the sample. This median mass, the V (M) uncertainties
are small compared with statistics (see Section 6 in Paper II).
The ΩMh determination, however, is based on the relative
number density of clusters near the high and low mass ends
of the sample. Since the volume is a fast-decreasing function at
low M’s, the V (M) variations are important. The most important
parameter of the L–M relation in our case is the power-law slope,
α (see Equation (20) in Paper II). Variations of α within the
error bars (±0.14) of the best-fit value lead to changes in the
derived ΩMh of ±0.027. Adding this in quadrature to the formal
statistical errors quoted above, we obtain a total uncertainty of
±0.035 (see Table 1). We have verified that other sources of
systematics in the ΩMh determination are much less important
than those related to the L–M relation.

In principle, a nonzero mass of light neutrino has some
effect on the perturbation power spectrum at low redshifts. We
checked, however, that their effect on the shape of the cluster
mass function is negligible for any

∑
mν within the range

allowed by the CMB data (Komatsu et al. 2009). Therefore,
neutrinos do not affect our results on ΩMh.

the ΩMh constraints dependent on the background cosmology and therefore
we prefer to base this measurement only on the local mass function. Also, we
use the YX-based mass estimates for this and σ8 analyses. The other
observables, TX or Mgas, give essentially identical results, because all of them
were normalized using the same set of low-z clusters see Paper II. The
difference between mass proxies is only important for the measurements based
on the evolution of the high-z mass function (Section 7).



The Best We Have Now:  Yx-Mass 

L38 M. Arnaud et al.: Calibration of the galaxy cluster M500–YX relation with XMM-Newton

Table 1. Physical cluster parameters. M500, Mg,500 and fg,500 are the total mass, gas mass and gas mass fraction respectively, within the radius
R500, inside which the mean mass density is 500 times the critical density at the cluster redshift. TX is the spectroscopic temperature within
[0.15–0.75]R500 and YX = Mg,500TX. Values are given for a ΛCDM cosmology with Ωm = 0.3, ΩΛ = 0.7, H0 = 70 km s−1 Mpc−1. Errors are 1σ.

Cluster z TX(keV) M500 (1014 M") Mg,500 (1013 M") YX (1013 M" keV) fg,500

A 1983 0.0442 2.18 ± 0.09 1.09+0.45
−0.29 0.64+0.10

−0.08 1.39+0.23
−0.18 0.058+0.026

−0.017

MKW9 0.0382 2.43 ± 0.24 0.88+0.23
−0.18 0.49+0.06

−0.05 1.19+0.18
−0.17 0.055+0.016

−0.012

A 2717 0.0498 2.56 ± 0.06 1.10+0.13
−0.11 1.02+0.06

−0.05 2.60+0.16
−0.15 0.093+0.012

−0.011

A 1991 0.0586 2.71 ± 0.07 1.20+0.13
−0.12 1.25+0.06

−0.06 3.39+0.19
−0.19 0.104+0.012

−0.011

A 2597 0.0852 3.67 ± 0.09 2.22+0.23
−0.21 2.51+0.09

−0.08 9.21+0.39
−0.38 0.113+0.012

−0.011

A 1068 0.1375 4.67 ± 0.11 3.87+0.29
−0.27 3.77+0.10

−0.10 17.6+0.63
−0.62 0.097+0.008

−0.007

A 1413 0.1430 6.62 ± 0.14 4.82+0.44
−0.40 7.55+0.28

−0.27 50.0+2.1
−2.1 0.157+0.016

−0.014

A 478 0.0881 7.05 ± 0.12 7.57+1.20
−1.02 9.33+0.46

−0.43 65.8+3.4
−3.2 0.123+0.020

−0.017

PKS 0745-191 0.1028 7.97 ± 0.28 7.27+0.80
−0.70 10.71+0.50

−0.47 85.3+5.0
−4.8 0.147+0.018

−0.016

A 2204 0.1523 8.26 ± 0.22 8.39+0.86
−0.77 10.55+0.40

−0.39 87.2+4.1
−4.0 0.126+0.014

−0.012

Table 2. Observed scaling relations. For each observable set (B,A),
we fitted a power law relation of the form B = C(A/A0)α, with A0 =
5 keV; 4× 1013 M"; 2× 1014 M" keV for TX, Mg,500 and YX respectively.
σlog,r and σlog,i are the raw and intrinsic scatter about the best fitting
relation in the log–log plane. The M500–TX relation is the same as that
given in Arnaud et al. (2005).

Relation log10 C α σlog,r σlog,i

h(z)M500–TX 14.580 ± 0.016 1.71 ± 0.09 0.064 0.039
h(z)2/5 M500–YX 14.556 ± 0.015 0.548 ± 0.027 0.062 0.039
M500–Mg,500 14.542 ± 0.015 0.803 ± 0.040 0.065 0.044
h(z)Mg,500–TX 13.651 ± 0.010 2.10 ± 0.05 0.048 0.036
h(z)2/5 Mg,500–YX 13.619 ± 0.008 0.678 ± 0.014 0.017 –
fg,500–YX −0.939 ± 0.016 0.133 ± 0.028 0.067 0.044

(δobs ∼ 1400), thus the M500 estimates involve some data ex-
trapolation. However, as discussed in Arnaud et al. (2005), the
M500 estimates rely solely on the physically and observationally-
motivated assumption that the best fitting NFW model remains
valid between δobs and δ = 500, and not on a less reliable ex-
trapolation of density and temperature profiles. The temperature
TX was derived from a single-temperature fit to the integrated
spectrum in the [0.1–0.5] R200 aperture, the inner radius defined
to exclude the cooling core region and the outer radius chosen
to ensure a sufficiently precise TX estimate over the whole mass
range. This aperture corresponds to [0.15–0.75] R500, while an
aperture of [0.15–1] R500 is used for the definition of TX in nu-
merical simulations and in the Chandra analysis (Nagai et al.
2007b). For typical decreasing temperature profiles, these TX
values are expected to be slightly smaller by 3–6%1.

The integrated gas mass depends sensitively on the gas den-
sity at large radius. To compute Mg,500, we re-derived the gas
density profile from the emissivity corrected surface brightness
profiles using the deprojection and PSF-deconvolution technique
recently developed by Croston et al. (2006). This derivation is

1 The difference is 3% for A1413 (Arnaud et al. 2005), a clus-
ter for which the temperature profiles measured up to R500 with both
XMM-Newton and Chandra are in excellent agreement (Pratt &
Arnaud 2002; Vikhlinin et al. 2005). In the simulations of Nagai et al.
(2007a), the [0.15–0.5] R500 temperature is 6% higher than that in
[0.15–1] R500. A smaller difference is expected for the aperture used
here.

Fig. 1. The M500–YX relation as seen by XMM-Newton from a sample of
10 local relaxed clusters. The red solid line is the best fitting power
law and the shaded orange area corresponds to the 1σ uncertainty.
The predicted relation from numerical simulations including cooling
and galaxy feedback (Nagai et al. 2007b) is over-plotted as a green
dot-dashed line (true mass) and as a green solid line (mass estimated
from mock X-ray observations and the HE equation). The dotted and
dashed blue lines are the observed relations derived from Chandra data
by Nagai et al. (2007b) and Maughan (2007) respectively (see text).

free of any assumption on profile shape, such as power law be-
haviour at large radius, a feature common to all analytical fitting
models used thus far (e.g. Pratt & Arnaud 2002; Pointecouteau
et al. 2005; Vikhlinin et al. 2006). Furthermore, the statistical
errors are readily estimated from a built-in Monte-Carlo proce-
dure (see Croston et al. 2006, for details). For the present sam-
ple, there is excellent agreement between the deprojected density
profiles and the analytical model profiles derived in our previous
work (Pointecouteau et al. 2005; Pratt et al. 2006). The signifi-
cant differences are in the very central regions of some clusters
(e.g. Croston et al. 2006, Fig. 12) and for A2597 at large radii,
where the deprojected profile is slightly steeper than the model
profile. The gas mass estimated with the two methods differs by
less than 3%, except for A2597 (8% difference). For all clus-
ters, except for A1983 and MKW9, the surface brightness pro-
files extend at least up to R500, or very close to it, so that ex-
trapolation uncertainty is not an issue. For A1983 and MKW9,
the Mg,500 estimated from extrapolation in the log–log plane are

Kravstov et al. 2006, Nagai et al. 2007, Arnaud et al. 2007

Arnaud et al. 2007
(XMM-Newton)

σM ≤ 10%

YX = MgasTX



Cosmological Constraints

Vihklinin et al. 2009
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Figure 10. Dark energy constraints in a flat universe from the combination of
all cosmological data sets. We find w0 = −0.991 ± 0.045 (±0.04 systematic)
and ΩX = 0.740 ± 0.012, see Table 2 and Section 8.3.

Therefore, the best-fit cosmological model is a good fit to
the data. In particular, Figure 17 from Vikhlinin et al. (2009)
shows that the mass function models computed in the ΛCDM
cosmology (w0 = −1) provide a very good description of the
data.

8.4. Systematic Uncertainties in the w0 Measurements

We estimate the effect of known sources of systematics on the
cosmological constraints by varying the corresponding individ-
ual sets of data or internal relations (e.g., evolution in LX–Mtot
entering the survey volume computations) within the estimated
1σ interval. We assume, optimistically, that the current WMAP
and BAO data are free from significant systematics (i.e., that
they are smaller than statistical uncertainties), and consider sys-
tematic errors only in the SN Ia and cluster data sets. In most
cases, a single source clearly dominates the systematic error
budget for a particular measurement, so we report on only those
dominant sources.

The largest known source of systematic error in the SN Ia
analysis is the correction for extinction in host galaxies and
uncertainties in intrinsic colors of SN Ia (e.g., Frieman et al.
2008). As a measure of systematic uncertainty in the combined
SN sample, we use ±0.13 in w0 for fixed ΩX, quoted by Wood-
Vasey et al. (2007). We implement these errors by computing
the SN likelihood in our experiments for (ΩX,w0 + 0.13) and
(ΩX,w0 − 0.13) instead of (ΩX,w0).

8.4.1. Main Sources of Cluster Systematics

The largest sources of systematic errors in the cluster analysis
are those in the normalization of the Mtot versus proxy relations.
They can be separated into two almost independent components:
(1) how accurately is the absolute cluster mass scale established
by X-ray hydrostatic Mtot estimates in the low-redshift clusters,
and (2) how accurately can we predict evolution in the Mtot
versus proxy relations, i.e., the relative mass scale between low-
and high-redshift clusters. The first component mainly affects
the σ8 measurements and the associated dark energy constraints,

while the second component affects the results derived from
using only evolution in the cluster mass function (those in
Figure 7). Our estimates of the Mtot systematics are discussed
extensively in Vikhlinin et al. (2009). For the absolute mass
scale (Mtot for fixed YX , TX, or Mgas) at z ≈ 0, we estimate
∆Msys/M ! 9% mainly from the comparison of the X-ray and
weak-lensing mass estimates in representative samples. This
source of error is implemented by changing the normalization
of the Mtot versus YX , Mgas, or TX relations at z = 0 by ±9%.
For uncertainties in the evolution of the Mtot versus proxy
relations, we estimate ∆M/M ≈ 5% at z = 0.5, mainly
from the comparison of the prediction of different models
describing observed small deviations of the cluster scaling
relations from self-similar predictions, and from the magnitude
of these deviations and corresponding corrections we apply to
the data. These uncertainties are implemented by multiplying
the standard scaling relations by factors of (1 + z)±0.12.

Comparable to the evolution in the Mtot versus proxy relation
are measurement uncertainties in the evolution factor for the LX–
Mtot relation. We do not use LX to estimate the cluster masses,
but the relation is required to compute the survey volume for
the high-z sample. The resulting volume uncertainty depends
on the mass scale, and can become comparable to the Poisson
error for the comoving cluster number density (see Section 5.1.3
in Vikhlinin et al. 2009). We tested how this influences the
cosmological fit by varying the parameters of the LX–Mtot
relation within their measurement errors around the best fit (the
evolution of LX for fixed Mtot in our model is parameterized
as E(z)γ and γ is measured to ±0.33; see Section 5.1.3 in
Vikhlinin et al. 2009).

Other sources of systematics in the cluster analysis (sum-
marized in Vikhlinin et al. 2009) are negligible compared with
those outlined above. We verified also that uncertainties in the
intrinsic scatter in the Mtot-proxy relations are not important.
The main reason is that in the dark energy constraints, we use
high-quality mass proxies (YX and Mgas), which should provide
mass estimates with small, 7%–10% scatter. Variations of this
scatter by up to ±50% with respect to the nominal values do
not significantly change the best-fit cosmological parameters.
This conclusion is seemingly different from Lima & Hu (2005)
because in that paper, they consider proxies with larger scatter
(the effect on the cosmological parameter constraints is pro-
portional to scatter squared), and also they assumed that the
normalizations in the Mtot versus proxy relation are obtained
from self-calibration while we use direct mass measurements
for a well observed subsample.

The variations of the best-fit parameters due to the systematics
discussed above are reported in Table 2 along with the dominant
source of error for each combination of cosmological data sets.
For example, variations in the evolution of the Mtot–Mgas and
Mtot–YX relations affect the best fit to the cluster data only by
∆w0 = ±0.1, while statistical uncertainties are ±0.2 to ±0.3
for fixed ΩX (Section 8.2); unless the systematics in this case
are a factor of 2 larger than our estimates, they are unimportant.

8.4.2. Systematics in the Combined Constraints

The most interesting case to consider is the reduction in the
systematic errors from combining both SN and cluster data with
the WMAP and BAO priors. In the SN+CMB+BAO case, the
SNe systematics cause variations in the best-fit w0 by ±0.076
(reduced from ±0.13 for the SN-only case mainly by includ-
ing WMAP priors). Cluster systematics affects the w0 con-
straints from the clusters+WMAP+BAO combination by ±0.04

Flat Models



State-of-the-Art: example
MaxBCG: color-selected clusters in SDSS

Cosmological Constraints from maxBCG Clusters 7

Fig. 4.— Confidence regions for each pair of parameters that were allowed to vary in our fiducial analysis (described in §3). Contours
show 68% and 95% confidence regions. Plots along the diagonal show the probability distributions for each quantity marginalized over the
remaining parameters. The probability distribution for the mass bias parameter β also shows the prior β = 1.00 ± 0.06 assumed in the
analysis.

TABLE 4
Best Fit Model

Parametera maxBCG maxBCG+WMAP5b

σ8 0.804 ± 0.073 0.807 ± 0.020
Ωm 0.281 ± 0.066 0.269 ± 0.018

〈lnN200|M1〉 2.47 ± 0.10 2.48 ± 0.10
〈lnN200|M2〉 4.21 ± 0.19 4.21 ± 0.13

σN200|M 0.357 ± 0.073 0.348 ± 0.071
β 1.016 ± 0.060 1.013 ± 0.059

aThe masses M1 and M2 are set to 1.3 × 1014 M!

and 1.3 × 1015 M! respectively.
bThese values are obtained by including the WAMP5

prior σ8(Ωm/0.25)−0.312 = 0.790 ± 0.024. See Section
4.3 for details.

lihood function is obviously not Gaussian.

4.1. Cosmological Constraints and Comparison to
WMAP

The solid curves in Figure 5 show the 68% and 95%
confidence regions from our analysis. The “thin” axis
of our error ellipse corresponds to σ8(Ωm/0.25)0.41 =

0.832 ± 0.033.18 The constraints on each of the in-
dividual parameters are σ8 = 0.80 ± 0.07 and Ωm =
0.28 ± 0.07. The marginalized likelihood can be rea-
sonably approximated by a log-normal distribution with
ln Ωm = −1.313 ± 0.183, 〈lnσ8〉 = −0.219 ± 0.081,
and a correlation coefficient between lnΩm and lnσ8

r = −0.899. Also shown in Figure 5 as dashed curves
are the corresponding regions from the WMAP 5-year
results (Dunkley et al. 2008). Our results are consistent
with WMAP5. Combining the two experiments results
in the inner filled ellipses, given by σ8 = 0.807±0.020 and
Ωm = 0.265 ± 0.016, with nearly no covariance between
the two parameters (r = 0.008). These joint constraints
on σ8 and Ωm represent nearly a factor of two improve-
ment relative to the constraints from WMAP alone.

The shape of the confidence region is easy to interpret:
since the number of massive clusters increases with both
σ8 and Ωm, in order to hold the cluster abundance fixed
at its observed value any increase in σ8 must be compen-
sated by a decrease in Ωm, implying that a product of the
form σ8Ωγ

m must be held fixed. The specific value of γ de-

18 The exponent 0.41 is obtained by estimating the covariance
matrix of lnσ8 and lnΩm, and finding the best constrained eigen-
vector.

~14,000 clusters
0.1<z<0.3
6 parameters:

- 2 cosmo
- 4 cluster

Simultaneous fit 
to counts and 
lensing data 
(Johnston et al. 
2007)

Rozo et al. 2009
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State-of-the-Art: example
Rozo et al. 20098 Rozo et al.

Fig. 5.— Constraints on the σ8 − Ωm plane from maxBCG and
WMAP5 for a flat ΛCDM cosmology. Contours show the 68% and
95% confidence regions for maxBCG (solid), WMAP5 (dashed),
and the combined results (filled ellipses). The thin axis of the
maxBCG-only ellipse corresponds to σ8(Ωm/0.25)0.41 = 0.832 ±
0.033. The joint constraints are σ8 = 0.807 ± 0.020 and Ωm =
0.265 ± 0.016 (one-sigma errors).

Fig. 6.— Halo mass function for two different cosmologies satis-
fying the maxBCG constraint σ8(Ωm/0.25)0.41 = 0.832. The mass
functions are weighted by the volume probed by the maxBCG cat-
alog (computed assuming Ωm = 0.265), and by the mass selection
function shown in Figure 3. The maxBCG normalization condi-
tion σ8(Ωm/0.25)0.41 = 0.832 results in a fixed halo abundance at
a mass scale M = 3.6×1014 M!. The dotted line at the top marks
the mass scale at which the mean of the richness–mass relation is
best constrained in our fiducial analysis.

pends on the mass scale that is best constrained from the
data. The particular degeneracy recovered by our anal-
ysis corresponds to a mass scale M = 3.6 × 1014 M!,
which is about what we would expect (i.e. roughly half
way between the lowest and highest masses probed by our
data). Figure 6 illustrates this argument by showing the
Tinker et al. (2008) halo mass function weighted by the
mass selection function from Figure 3 for two different
cosmologies: a low σ8 (high Ωm) cosmology, and a high
σ8 (low Ωm) cosmology, where the product σ8Ω0.41

m has
been held fixed to our best-fit value. We will refer back
to Figure 6 multiple times in the following discussion.

4.2. Constraints on the Richness–Mass Relation

In our analysis, we parameterized the richness–mass re-
lation in terms of its scatter, and the value of the mean
〈lnN200|M〉 at two mass scales, M1 = 1.3×1014 M! and
M2 = 1.3× 1015 M!. We now re-parameterize this rela-
tion in terms of an amplitude and slope for 〈lnN200|M〉,
selecting as the pivot point the mass scale at which the
uncertainty in 〈lnN200|M〉 is minimized. We write then

〈lnN200|M〉 = A + α(ln M − lnMpivot). (13)

We find the error on the amplitude parameter is mini-
mized for Mpivot = 1.09×1014, which agrees well with the
peak in the mass distribution of our clusters as shown in
Figure 6. In what follows, we discuss only constraints on
the richness–mass relation assuming this parameteriza-
tion. A discussion of possible curvature in the richness–
mass relation and/or mass scaling of its scatter is rele-
gated to §5.3.

Figure 7 summarizes our constraints on the richness–
mass relation after marginalizing over all other parame-
ters. The best-fit values for each of the parameters are
A = 2.34 ± 0.10, α = 0.757 ± 0.066, and σN200|M =
0.357±0.073. Note that for a pure power-law abundance
function, one expects σN200|M = ασM|N200

, in accordance
with our result.

Of these results, the constraints on the slope and scat-
ter of the richness–mass relation are particularly worth
noting. First, it is clear that the naive scaling N200 ∝ M
is not satisfied, with the slope of the richness–mass rela-
tion being significantly smaller than unity. Second, the
recovered scatter σN200|M = 0.357 ± 0.073 is larger than
the Poisson value σN200|M ≈ 0.2 that one might naively
expect for clusters with N200 ≈ 30 galaxies, which is the
typical richness of clusters at the mass scale where mass
function is best constrained.

Interpreting these results in terms of standard halo oc-
cupation model parameters requires care. The maxBCG
richness is known to suffer from various sources of sys-
tematics including miscentering of clusters (Johnston
et al. 2007a) and color off-sets in the richness estimates
(Rozo et al. 2008b), both of which will impact the recov-
ered richness–mass relation at some level. Moreover, any
richness estimate will suffer to some extent from projec-
tion effects (Cohn et al. 2007), and discrepancies between
assigned cluster radii and the standard mass-overdensity
definitions used for halos. Disentangling the various con-
tributions of each of these different sources of scatter to
the total variance of the richness–mass relation is beyond
the scope of this paper, and will not be considered further
here.

Figure 7 also shows that the amplitude of the richness–
mass relation is anti-correlated with the scatter. This is
not surprising: at fixed cluster abundance, and given
a fixed mass function, models with a high amplitude
of the richness–mass relation result in halos that tend
to be very rich. This means that the number of lower
mass halos that scatter into higher richness must be
low, or otherwise the abundance of clusters will be over-
predicted. Consequently, high amplitude models must
have low scatter, leading to an anti-correlation between
the two parameters.

4.3. Degeneracies Between Cosmology and the
Richness–Mass Relation



Illustrative Example

Varied parameters:

(M∗,α,σln)
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Cosmological Constraints
quantify the ultimate potential of the SNAP cluster catalog; more detailed studies are 

underway.  The resulting catalog contains over 2.5 million objects.  This is unprecedented and 

represents a fundamental change in context for this field by enabling powerful systematic 

checks and providing a rich data set for constraining astrophysical uncertainties.  

 

 
 

Figure: Dark energy and growth-of-structure constraints for a WMAP-5 model with 20% 

observable-mass dispersion and Planck priors on the cosmological parameters.  Contours at 

65% are shown for three different priors on the (log-normal) observable-mass distribution.  
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.   Left: Dark energy constraints in the wa-w0 plane.  Right: Joint constraints 

in the wa-!g plane.   

  

 The Figure shows the constraints on the dark energy equation-of-state (left) and on the 

growth-rate index !g (right) after marginalizing over other parameters not shown, including 

the five cosmological parameters !
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s( )  and different parameters describing a 

log-normal observable-mass distribution.  For this illustration we consider three observable-

mass parameters: a power-law relation with an exponent and normalization, plus a log-normal 

dispersion.  The dashed green (outer) contours correspond to the case of pure self-calibration, 

i.e., no prior information on the observable-mass distribution.  The solid blue contours give 

the constraints when we apply a strong prior on the mean observable-mass relation; given the 

rich SNAP data set, including both high-quality imaging and well-calibrated photo-zs, we 

expect to set a strong prior from, for example, lensing or clustering studies.  The inner, 

dashed red contours show the result when the full observable-mass distribution is tightly 

constrained by priors.   

We see that both dark energy and gravity parameters are well constrained. Cluster 

abundance and its evolution are, in fact, exquisitely sensitive to the growth rate, much more 

than other dark energy probes, because clusters are rare objects at the top of the mass 

hierarchy: the mass function at the high-mass end is an exponential function of the density 

perturbation amplitude, ! (M , z) = !O (M )g(z) , where !
O

 is the present-day amplitude.  

The cluster method relies on a number of SNAP characteristics and imposes some 

requirements on the survey strategy.  We require in particular a filled survey with few gaps 

because clusters are extended objects; this is crucial for clusters for both their detection as 

well as their mass determination.  High-precision photometry and calibrated photo-zs are also 

important to cluster finding and galaxy membership determination.  As for cosmic shear, we 

seek high-quality imaging to give us good lensing mass estimates in order to constrain the 

mean observable-mass relation and its dispersion; reducing the error on individual 
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Shear-Detected “Clusters”



Shear-Selected Catalogs

• Detect shear “sources” in weak lensing map 
using, e.g., an optimal matched filter

• Kaiser 1995, Schneider 1996, Kruse & Schneider 1999, Reblinski et al. 1999

• Identify clusters and measure (photo-)z’s

• Mo-Mass (Mshear-Mass) relation involves just dark 
matter physics

• And cosmological parameters => additional 
cosmological constraints



Shear Peak Catalogs

Hartlap et al.

Ray tracing in 
Millennium Simulation

30’ shear field



Example: SNAP Study

No mass dispersionM
de

t 
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ol
ar

 m
as

se
s)

Redshift

Detectable Mass (optimal NFW filter)
1015

1014

1013

Shape noise only
S/N>5

dQ/dz from Marseille 
simulations 
& with σγ = 0.3

WMAP-5 flat fiducial model

FoM=970
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Shear-Peak Catalogs: Issues

• Problem: contamination by false peaks 
(projections)

• Reblinsky & Bartelmann 1999, Metzler et al. 2001

• Individual mass measurements ~20% intrinsic 
scatter due to projection effects 

• Hoekstra 2001, 2004

• Can the contamination be controlled?



2D Shear Peak Statistics

• Ignore reality of detected peaks

• Directly use observed peaks as probe

• Can be predicted from, e.g., N-body simulations

• Analytical peak-abundance function? - Marian et al. 
2008

• N-body: heavy calculation for each model

• 2D statistics less constraining than 3D



Closing Thoughts

•Clusters are astrophysical objects (like others) whose 
ultimate quantitative utility depends on how many 
parameters are needed to standardize them for 
cosmological studies.

• Cluster surveys

• Shear surveys (2D, 3D)

•Fundamental research - lots to do

•Multi-wavelength data will be very important

•Huge catalogs compared to today’s - new frontier



List of Issues

• Clusters & shear peaks

• Catalog completeness (selection function)

• Catalog contamination

• Clusters

• Proxy-Mass relation: full probability distribution

• Shear peaks

• Comparison to theory

• 2D versus 3D statistic



END


