Weak Gravitational Lensing

Yannick Mellier IAP

Paris, Sept. 15, 2009

Gravitational lensing

weak field limit, small deflection angle, stationary lens

Lens equation

 $\boldsymbol{\beta} = \boldsymbol{\theta} - \boldsymbol{\alpha}'(\boldsymbol{\theta})$

Deflection angle and projected mass density

$$\boldsymbol{\alpha}'(\boldsymbol{\theta}) = \frac{4G}{c^2} \frac{D_{OL} D_{LS}}{D_{OS}} \int \Sigma \left(D_{OL} \boldsymbol{\theta}' \right) \frac{\boldsymbol{\theta} - \boldsymbol{\theta}'}{|\boldsymbol{\theta} - \boldsymbol{\theta}'|^2} \mathrm{d}^2 \boldsymbol{\theta}' = \frac{1}{\pi} \int \frac{\boldsymbol{\theta} - \boldsymbol{\theta}'}{|\boldsymbol{\theta} - \boldsymbol{\theta}'|^2} \kappa \left(\boldsymbol{\theta}' \right) \, \mathrm{d}^2 \boldsymbol{\theta}' \,,$$

Image position shifted, image multiplication, achromatic effect

Gravitational lensing

Projected Newtonian gravitational potential

$$\psi(\boldsymbol{\theta}) = \frac{1}{\pi} \int \kappa(\boldsymbol{\theta}') \ln|\boldsymbol{\theta} - \boldsymbol{\theta}'| \, \mathrm{d}^2 \boldsymbol{\theta}' \text{ and } \boldsymbol{\alpha}'(\boldsymbol{\theta}) = \frac{1}{\pi} \int \kappa(\boldsymbol{\theta}') \frac{\boldsymbol{\theta} - \boldsymbol{\theta}'}{|\boldsymbol{\theta} - \boldsymbol{\theta}'|^2} \, \mathrm{d}^2 \boldsymbol{\theta}' \,.$$

$$eta = oldsymbol{ heta} - oldsymbol{lpha}'(oldsymbol{ heta}) \longrightarrow rac{\partialeta}{\partialoldsymbol{ heta}} = \delta_{ij} - rac{\partial^2\psi(oldsymbol{ heta})}{\partial heta_i\partial heta_j} = \delta_{ij} - \partial_i\partial_j\psi$$

Magnification, gravitational convergence κ and gravitational shear γ

Sampling the gravitational shear field on the sky: gravitational distortion of background sources

Simulated unlensed field

Same field lensed by an isothermal sphere lens mass model: 800 km/sec, *z*=0.3

Weak gravitational shear = ellipticity of galaxies

Weak gravitational shear = ellipticity of galaxies

Assume sources orientation is isotropic:

 $2 \gamma = \langle \epsilon^{I} \rangle \rightarrow \kappa =$ projected mass density

Weak gravitational shear = ellipticity of galaxies

Probing the universe with strong/weak lensing

- Galaxy-galaxy lensing Hoekstra et al 2006, Mandelbaum et al 2006, Parker et al 2007, Kubo et al 2008
- Galaxies/Groups : arcs/rings Cabanac et al 2007, Bolton et al 2006, 2008, Gavazzi et al 2007
- **Clusters of galaxies** Kneib et al 1996, Johnston et al 2007, Hoekstra et al 2007, Oguri et al 2009, Ebeling et al 2009
- **Superclusters** Kaiser et al 1998, Gavazzi et al 2004, Heymans et al 2008

• **Dark matter vs. baryon distribution** Clowe et al 2004, 2006, Hoekstra et al 2007, Bergé et al 2008, Leauthaud et al 2009

• **Testing CDM haloes with gravitational lensing** Bartelmann 1996, Dahle et al 2003, Kochanel & Dalal 2004, Mandelbaum et al 2006, 2008, Leauthaud et al 2009

• Is dark matter collisionless ? Meneghetti 2001, Miralda-Escudé 2002, Randall et al 2008, Bradac et al 2008

- Mass of DM particles/neutrinos Li et al 2008, Gong et al 2008, Tereno et al 2009, Ichiki et al 2008
- Large Scale structure, the dark matter power spectrum and cosmology
- Dark matter or modified gravity ?

Probing the universe with strong/weak lensing

- Galaxy-galaxy lensing Hoekstra et al 2006, Mandelbaum et al 2006, Parker et al 2007, Kubo et al 2008
- Galaxies/Groups : arcs/rings Cabanac et al 2007, Bolton et al 2006, 2008, Gavazzi et al 2007
- **Clusters of galaxies** Kneib et al 1996, Johnston et al 2007, Hoekstra et al 2007, Oguri et al 2009, Ebeling et al 2009
- **Superclusters** Kaiser et al 1998, Gavazzi et al 2004, Heymans et al 2008

• **Dark matter vs. baryon distribution** Clowe et al 2004, 2006, Hoekstra et al 2007, Bergé et al 2008, Leauthaud et al 2009

• **Testing CDM haloes with gravitational lensing** Bartelmann 1996, Dahle et al 2003, Kochanel & Dalal 2004, Mandelbaum et al 2006, 2008, Leauthaud et al 2009

• Is dark matter collisionless ? Meneghetti 2001, Miralda-Escudé 2002, Randall et al 2008, Bradac et al 2008

- Mass of DM particles/neutrinos Li et al 2008, Gong et al 2008, Tereno et al 2009, Ichiki et al 2008
- Large Scale structure, the dark matter power spectrum and cosmology
- Dark matter or modified gravity ?

Cosmological convergence, κ , and shear, γ , fields

10° ~250 Mpc

The VIRGO consortium

Cosmological Weak Lensing

Cosmic shear can « see » $P_{\delta}(k,z)$ of dark matter

The projected dark matter power spectrum:

2-D cosmic shear

What we measure:

What we want:

ellipticity 2 pt correlation function = shear 2 pt correlation function • Two-point correlation function

$$\xi_{+}(\theta) = \frac{1}{2\pi} \int d\ell \,\ell J_{0}(\ell \theta) P_{\kappa}(\ell)$$

$$\xi_{-}(\theta) = \frac{1}{2\pi} \int d\ell \,\ell J_{4}(\ell \theta) P_{\kappa}(\ell),$$

• Aperture-mass variance/dispersion

$$\langle M_{\rm ap}^2 \rangle(\theta) = \frac{1}{2\pi} \int d\ell \, \ell \, P_{\kappa}(\ell) \hat{U}^2(\theta\ell)$$

• Top-hat-variance

$$\begin{aligned} |\bar{\gamma}|^2 \rangle(\theta) &= \frac{1}{\pi \theta^2} \int d^2 \vartheta \, \gamma(\vartheta) \gamma^*(\vartheta) \\ &= \frac{1}{2\pi} \int d\ell \, \ell \, P_\kappa(\ell) \left[\frac{2 J_1(\ell \theta)}{\ell \theta} \right]^2 \end{aligned}$$

reconstruct the 2D and 3D dark matter power spectra

Statistics : theoretical predictions

(Blandford el al 1991, Miralda-Escudé 1991, Kaiser 1992, 1998, Bernardeau et al 1997, Jain & Seljak 1997, Schneider et al 1998)

Theoretical predictions from the gravitational instability scenario

Properties of cosmic shear signal

A simple toy model: single lens plane at redshift z_0 , $P_{\delta}(k) \propto \sigma_8^2 k^n$, CDM, no Λ , linear growth:

$$\langle \kappa^2(\theta) \rangle^{1/2} = \langle \gamma^2(\theta) \rangle^{1/2} \approx 0.01 \sigma_8 \,\Omega_{\rm m}^{0.8} \left(\frac{\theta}{1 \text{deg}}\right)^{-(n+2)/2} z_0^{0.75}$$
Bernardeau et al 1997

Amplitude cosmic shear (shear-induced ellipticity): ~1%

Intrinsic ellipticity distribution of galaxies ~30%

Cosmic shear signal, dark matter power spectrum and cosmological parameters

A simple toy model: single lens plane at redshift z_0 , $P_{\delta}(k) \propto \sigma_8^2 k^n$, CDM, no Λ , linear growth:

$$\langle \kappa^2(\theta) \rangle^{1/2} = \langle \gamma^2(\theta) \rangle^{1/2} \approx 0.01 \, \sigma_8 \, \Omega_{\mathrm{m}}^{0.8} \left(\frac{\theta}{1 \mathrm{deg}}\right)^{-(n+2)/2} z_0^{0.75}$$

Bernardeau et al 1997

Observing the real world : cosmic shear surveys

Munshi et al 2008

ID	Statistic	Field	m _{lim}	Zs
Maoli et al. 01	$\langle \gamma^2 \rangle$	VLT+CTIO+WHT+CFHT	-	-
Van Waerbeke et al. 01	$\langle \gamma^2 \rangle$, $\xi(r)$, $\langle M_{\rm ap}^2 \rangle$	CFHT 8 sq.deg.	I=24.5	1.1
Rhodes et al. 01	$\xi(r)$	HST 0.05 sq.deg.	I=26	0.9-1.1
Hoekstra et al. 02	$\langle \gamma^2 \rangle$	CFHT+CTIO 24 sq.deg.	R=24	0.55
Bacon et al. 03	$\xi(r)$	Keck+WHT 1.6 sq.deg.	R=25	0.7-0.9
Réfrégier et al. 02	$\langle \gamma^2 \rangle$	HST 0.36 sq.deg.	I=23.5	0.8-1.0
Van Waerbeke et al. 02	$\langle M^2_{ m ap} angle$	CFHT 12 sq.deg.	I=24.5	0.78-1.08
Hoekstra et al. 02	$\langle \gamma^2 angle, \xi({\it r}), \langle M^2_{\rm ap} angle$	CFHT+CTIO 53 sq.deg.	R=24	0.54-0.66
Brown et al. 03	$\langle \gamma^2 \rangle$, $\xi(r)$	COMBO17 1.25 sq.deg.	R=25.5	0.8-0.9
Hamana et al. 03	$\langle M_{\rm ap}^2 \rangle$, $\xi(r)$	Subaru 2.1 sq.deg.	R=26	0.8-1.4
Jarvis et al. 03	$\langle \gamma^2 \rangle$, $\xi(r)$, $\langle M_{\rm ap}^2 \rangle$	CTIO 75 sq.deg.	R=23	0.66
Rhodes et al. 04	$\langle \gamma^2 \rangle$, $\xi(r)$	STIS 0.25 sq.deg.	$\langle I \rangle = 24.8$	1.0 ± 0.1
Heymans et al. 05	$\langle \gamma^2 \rangle$, $\xi(r)$	GEMS 0.3 sq.deg.	$\langle m_{606} angle = 25.6$	~ 1
Massey et al. 05	$\langle \gamma^2 \rangle$, $\xi(r)$	WHT 4 sq.deg.	R=25.8	~ 0.8
Van Waerbeke et al. 05	$\langle \gamma^2 \rangle$, $\xi(r)$	CFHT 12 sq.deg.	I=24.5	0.9 ± 0.1
Heitterscheidt et al. 06	$\langle \gamma^2 \rangle$, $\xi(r)$	GaBoDS 13 sq.deg.	R=[21.5,24.5]	~ 0.78
Semboloni et al. 06	$\langle M_{\rm ap}^2 \rangle$, $\xi(r)$	CFHTLS-DEEP 2.3 sq.deg.	i=25.5	~ 1
Hoekstra et al. 06	$\langle \gamma^2 \rangle, \xi(r), \langle M_{\rm ap}^2 \rangle$	CFHTLS-WIDE 22 sq.deg.	i=24.5	0.8 ± 0.1

+ Massey et al 2007 (COSMOS) + Schrabback et al 2007 (ACS) +

Benjamin et al 2007 (CFHTLS-T01+Virmos-Descart+RCS+GaBoDS) + Fu et al 2008 (CFHTLS-T03)

The Canada-France-Hawaii Telescope Legacy Survey

CFHT telescope: CNRS/INSU, CNRC, UH

Megacam: built by CEA

CFHT/Terapix/CADC

The Canada-France-Hawaii Telescope Legacy Survey

4 Wide W: 170 deg² (ugriz, 1h/filter) + 4 Deep D: 4x1 deg² (ugriz, 50hrs/filter)

14.35

CFHTLS Weak Lensing T03

- Data: Wide + Deep
- Sky coverage : 55 deg²
- 3 independent fields: W1, W2, W3
- Homogeneous data set:
- Spectro-z inside CFHTLS fields (VVDS)
- Photo-z inside CFHTLS Deep
- Scales :
- 1' 8°
- ~400 kpc ~100 Mpc at z=0.5

Fu et al 2008

13.55

Exploration of the dark matter power spectrum with the CFHTLS-Wide: angular scales explored

Exploration of the dark matter power spectrum with the CFHTLS-Wide: angular scales explored

CFHTLS weak lensing: 3 fields W1, W2, W3 very large scales covered

Amplitude and cosmological interpretation of the cosmic shear signal

A simple toy model: single lens plane at redshift z_0 , $P_{\delta}(k) \propto \sigma_8^2 k^n$, CDM, no Λ , linear growth:

$$\langle \kappa^2(\theta) \rangle^{1/2} = \langle \gamma^2(\theta) \rangle^{1/2} \approx 0.01 \,\sigma_8 \,\Omega_{\mathrm{m}}^{0.8} \left(\frac{\theta}{1\mathrm{deg}}\right)^{-(n+2)/2} (z_0^{0.75})$$

redshifts information: as important as good shape measurements

Redshift distribution of sources

Photometric redshift calibrated with the VVDS spectroscopic sample

- CFHTLS Deep data + ESO-VLT / VVDS spectra INSIDE the CFHTLS Deep and Wide fields
- CFHTLS+VVDS: Ilbert et al 2006, Coupon et al 2009:
 - Accurate *n*(z)
 - · Field to field scatter from the data

Constraints on Ω_m - σ_8 :all scales

Constraints on Ω_m - σ_8 : linear scales

Constraints on $\Omega_{\rm m}$ - σ_8

Beyond the projected dark matter power spectrum:

tomography

Tomography: the lensed universe in slices

Massey et al 2007

Lensing tomography is challenging

• Need very deep exposures to get enough background (lensed) galaxies even for the highest redshift slices ...

 Deep exposures → most galaxies very small, need excellent image quality and sampling: space much better

Need accurate redshifts to split galaxies into slices

 Need large field of view to probe the dark matter power spectrum over enough scales and limit cosmic variance

The COSMOS/zCOSMOS survey

COSMOS imaging (PI . N. Scoville)

- 2 deg² HST/ACS , 640 orbits
- 2 10⁶ galaxies up to I_{AB} =27 mag.

 Huge follow up: radio, Spitzer, Galex, XMM, Chandra, Subaru+ CFHT visible+ NIR complementary data,

zCOSMOS (PI: S. Lilly)

- 540 hrs of VLT/VIMOS spectroscopic follow up
- 25000 redshifts with I_{AB}=22.5 (z<1.0)
- 12000 redshifts 1.4<z<2.5

Weak lensing with COSMOS

Shear map

Convergence map

Massey et al 2009

Cosmic shear with COSMOS

Joint contraints on the dark matter power spectrum Ω_m = 0.247 +/- 0.016 ; σ_8 = 0.800 +/- 0.023 ; n_s = 0.971 +/- 0.011

Lensing tomography with COSMOS

Massey et al 2007

Observing the growth of structure at work: weak lensing tomography in COSMOS

Shear correlation function at fixed angular scale as function of redshift

Massey et al 2007

Dark energy

The gravitational convergence power spectrum: weak dependence on w

 $P_{\kappa} \propto \sigma_8^{2.9} \Omega_{DE}^3 |w|^{0.31} z^{1.6}$

Huterer et al 2006

Equation of state of dark energy : $P = w \rho$

Constraints on $\Omega_{\rm m} - w$ (P = w ρ , with w = constant)

Dark energy from CFHTLS weak lensing + SNLS + WMAP

Parameter	CMB	CMB+Lens	CMB+SN	CMB+Lens+SN	CMB+Lens+SN+sys
$\Omega_{\rm b}$	$0.045^{+0.020}_{-0.016}$	$0.041\substack{+0.016\\-0.008}$	$0.0433^{+0.0028}_{-0.0025}$	$0.0432^{+0.0026}_{-0.0023}$	0.0428 ± 0.0029
$\Omega_{\rm m}$	0.262 ^{+0.099} -0.093	$0.242^{+0.092}_{-0.048}$	$0.257^{+0.025}_{-0.023}$	$0.253^{+0.018}_{-0.016}$	0.251 ^{+0.023} -0.018
τ	0.087 ± 0.016	$0.086^{+0.016}_{-0.017}$	$0.088^{+0.019}_{-0.016}$	0.088+0.019 -0.015	0.088 ± 0.017
W	$-1.08^{+0.39}_{-0.53}$	$-1.09^{+0.24}_{-0.22}$	$-1.025^{+0.071}_{-0.072}$	$-1.010^{+0.059}_{-0.060}$	$-1.021^{+0.079}_{-0.081}$
II _s	$0.963^{+0.019}_{-0.014}$	$0.961^{+0.014}_{-0.016}$	0.962 ± 0.015	$0.963^{+0.015}_{-0.014}$	0.963+0.014
$10^{9}\Delta_{R}^{2}$	$2.43^{+0.13}_{-0.14}$	$2.418^{+0.083}_{-0.110}$	$2.43^{+0.12}_{-0.11}$	$2.414^{+0.098}_{-0.092}$	2.41 ± 0.11
h	$0.74^{+0.18}_{-0.12}$	$0.754^{+0.096}_{-0.089}$	$0.719^{+0.025}_{-0.022}$	$0.720^{+0.023}_{-0.021}$	0.723+0.027
σ_8	$0.82^{+0.14}_{-0.15}$	$0.819\substack{+0.061\\-0.069}$	$0.807^{+0.044}_{-0.046}$	$0.795^{+0.030}_{-0.027}$	$0.798^{+0.037}_{-0.044}$

Kilbinger et al 2009

Without tomography w, WL performs less than SNIa... Need

- More data
- More accurate weak lensing signal
- Tomography « a la COSMOS » to explore the growth of structure

Dark energy

 Constraining the equation of state of dark energy is promising, but not yet achieved by weak lensing surveys

• Getting w(z) will be hard with CFHTLS only

Large freedom if w not constant

CTIO, *w*=constant

CTIO
$$w(a) = w_0 + (1-a)w_a$$

Jarvis et al 2006

Dark energy

- Constraining the equation of state of dark energy is promising, but not yet a achieved by weak lensing surveys
- Getting w(z) will be hard with CFHTLS only... Need
 - photo-z for all CFHTLS galaxies (Coupon et al 2009),
 - more accurate shear measurement,
 - more galaxies,
 - more sky coverage,
 - tomography, ... in progress for ground surveys, ...

...the HST/COSMOS shows the route!

Testing gravity

Gravitational lensing in non-GR models

Metric, scalar perturbations

$$ds^{2} = -(1+2\psi) dt^{2} + (1-2\phi) a(t)^{2} dx^{2}$$

Deflection angle

$$\alpha = -2\nabla_{\perp}\phi_{2D} \longrightarrow \qquad \alpha = -\nabla_{\perp}(\phi + \psi)_{2D}$$

Gravitational convergence

$$\kappa = \frac{1}{2} \left(\partial_1^2 + \partial_2^2 \right) (\phi + \psi) = \bar{\rho} \int G W (z, z_s) \,\delta(z) \, \mathrm{d}z$$

$$\bigvee$$

$$\nabla^2 (\psi + \phi) = 8\pi G_{eff} \, a^2 \bar{\rho} \,\delta \qquad (\text{Uzan 2007, Jain \& Zhang 2007)}$$

$$\bigvee$$

$$\kappa = \frac{1}{2} \left(\partial_1^2 + \partial_2^2 \right) (\phi + \psi) = \bar{\rho} \int G_{eff} W (z, z_s) \,\delta(z) \, \mathrm{d}z$$

Uzan & Bernardeau 2001, Jain & Zhang 2007

Growth of structure, power spectra in non-GR models: testing GR by exploring the different power spectra

Growth factors for density and metric potentials:

- Density growth factor : $D_{\delta}(z,k)$ • Lensing growth factor : $D_{\psi+\phi} \sim G_{eff}$. D_{δ}
- Dynamical growth factor : $D_{\gamma} = \gamma \cdot D_{\phi}$

Uzan & Bernardeau 2001, White & Kochanek 2001, Song, 2006, Jain & Zhang 2007, Hu & Sawicki 2007, Doré et al 2007, Uzan 2007, Amendola et al 2007, Song & Doré 2009, Guzik et al 2009

Testing gravity with weak lensing:

recents results

	Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	$\begin{array}{c} \text{G-G}\\ \text{WL}\\ \varepsilon_h \neq 0 \end{array}$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
	Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
	Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
S	Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_*^{0.75} {\rm :}$ MOND disfavored
la)	Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
G	Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
	Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
	Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Ľ	Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
luste	Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
C	Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu} > 2$ eV
	Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
	Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
cture	White & Kochanek 2001	VIRMOS/ DESCART			Х			GR ok Yukawa-type
e stru	Dore et al 2007	CFHTLS +SDSS			Х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
äle	Wang et al 2008	CTIO			х			DGP disfavored
Large sc	Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Gravity on galaxy scale with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	G-G WL $\varepsilon_h \neq 0$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_{\star}^{0.75} :$ MOND disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu}\sim 2{\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			Х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Testing Gravity with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	G-G WL $\varepsilon_h \neq 0$	Cosmic Shear V L	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_{\star}^{0.75} :$ MOND disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			Х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			Х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Galaxy-galaxy lensing

• Weak *tangential shear* $<\gamma_t > of$ background galaxies around an ensemble of lenses

• Measure $<\gamma_t>$ as function of radial distance galaxy-mass correlation, out to Mpc

Galaxy-galaxy lensing

$<\gamma_t>$ as function of radial distance

- Mass-to-light ratio
- Typical size of dark haloes
- Shape of haloes
- Halo properties as function of galaxy type and redshift
- Test halo properties in
 - standard cosmological (CDM)
 scenarios
 - MOND/TeVeS

Testing Gravity with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	$\begin{array}{c} {\rm G-G} \\ {\rm WL} \\ \varepsilon_h \neq 0 \end{array}$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_*^{0.75} :$ MOND disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			Х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			Х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Gravity on cluster scale with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	$\begin{array}{c} \text{G-G}\\ \text{WL}\\ \varepsilon_h \neq 0 \end{array}$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_*^{0.75} \colon {\rm MOND}$ disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			Х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Gravity on cluster scale with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	G-G WL $\varepsilon_h \neq 0$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_{\star}^{0.75} :$ MOND disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: neo $m_{\nu}\sim 2{\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu} > 2 \text{ eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν distavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			х			DGP disfavored
Thomas et al 2008	CFHTLS			х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Contraints on neutrino mass from current cosmological probes

No WL Data	Authors	$\sum m_{\nu_i}$
2dF (P01)	Elgaroy et al 2002	< 1.8 eV
WMAP5+BAO+SN	Komatsu et al 2005	< 0.67 eV
2dF(C05)+CMB	Sanchez et al 2005	< 1.2 eV
BAO+CMB+LSS + SN	Goobar et al 2006	< 0.62 eV
Ly- α + SDSS + WMAP	Seljak et al 2004	$< 0.17 \ \mathrm{eV}$
WMAP3 alone	Fukugita et al 2006	< 2.0 eV
WMAP5+LSS + SN+BAO	Komatsu et al 2008	< 0.61 eV
WMAP5+SDSS(R7)+WMAP5+U-SN	Beth et al 2009	< 0.61 eV
Cosmic shear data (+joint data)	Authors	
Benjamin et al 2008 WL: CFHTLS T0001+ RCS+ VIRMOS-Descart+GaBoDS	Li et al 2008	< 0.47 eV (95% C.L.)
Benjamin et al 2008	Gong et al 2008	$< 0.80 \text{ eV}$ (2 σ)
Fu et al 2008 WL: CFHTLS T0003	Tereno et al 2009	$0.03 < \sum m_{{\nu}_i} < 0.54~{\rm eV}~(95\%~{\rm C.L.})$
Fu et al 2008	Ichiki et al 2008	< 0.54 eV (95% C.L.)

Gravity on cluster scale with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	$\begin{array}{c} \text{G-G}\\ \text{WL}\\ \varepsilon_h \neq 0 \end{array}$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_*^{0.75} \colon {\rm MOND}$ disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			Х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Testing gravity with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	$\begin{array}{c} \text{G-G} \\ \text{WL} \\ \varepsilon_h \neq 0 \end{array}$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	х					$r_E \propto M_{\star}^{0.75} :$ MOND disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			Х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			Х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			GR ($\alpha = 0$) ok, DGP ($\alpha = 1$) rejected $H^2 - \frac{H^{\alpha}}{r_c^{2-\alpha}} = \frac{8\pi G}{3}$ $r_c = (1 - \Omega_m)^{\frac{1}{2-\alpha}} H_o^{-1}$

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Simple test of GR with CFHTLS lensing data

Background cosmology: flat ACDM Friedmann-Lemaître

Yukawa potential; alteration of gravity above scales ~ 1/m , increase/decrease of gravity: sign of a

$$\begin{split} \Phi(\mathbf{r}) &= (1-\alpha)\Phi(\mathbf{r},0) + \alpha\Phi(\mathbf{r},m) \\ \Phi(\mathbf{r},m) &= G \int \frac{\rho(\mathbf{r}')d^3\mathbf{r}'}{|\mathbf{r}-\mathbf{r}'|}e^{-m|\mathbf{r}-\mathbf{r}'|}. \\ \ddot{D} + 2H\dot{D} &= \frac{3}{2}\frac{H_0^2\Omega_{m0}}{a^3}f(k)D \\ f^{Yuk}(\mathbf{k}) &\equiv f(\mathbf{k}) = 1 - \alpha\frac{1}{1 + \left(\frac{k}{a \cdot m}\right)^2} \end{split}$$

Doré, Martig, Mellier, Kilbinger et al. 2007

Constraints from CFHTLS and SDSS data

(WMAP3-priors, marginalised over lensing redshift distribution & linear galaxy bias)

 $\alpha = 0 := GR$

⁶¹ Doré et al. 2007

Testing gravity with gravitational lensing

Author	Survey /Data	G-G WL $r_E \propto M_*^{\alpha}$	$\begin{array}{c} \text{G-G}\\ \text{WL}\\ \varepsilon_h \neq 0 \end{array}$	Cosmic Shear WL	X-ray Cluster SL+WL	Galaxy SL+ dyn.	Conclusion
Hoekstra et al 2004	RCS		Х				$\varepsilon > 0$: MOND disfavored
Parker et al 2004	CFHTLS		Х				$\varepsilon > 0$: MOND disfavored
Tian et al 2009	RCS+SDSS	Х					$r_E \propto M_{\star}^{0.75} \text{: MOND}$ disfavored
Sanders & Land 2008	SLACS					X (FP)	Ok with MOND
Ferreras et al 2008	CASTLES					X (FP)	MOND disfavored
Zhao et al 2006	CASTLES					X (SL)	\sim ok with MOND
Ferreras et al 2009	CASTLES					X (Rot)	TeVeS disfavored
Clowe et al 2004 Bradac et al 2006	1E 0657-56				X X		DM favored (WL only) DM favored (WL+SL)
Angus et al 2006	1E 0657-56				Х		ok with MOND: need $m_{\nu} \sim 2 {\rm eV}$ SL unexplained
Takahashi & Chiba 2007	45 clusters				Х		MOND disfavored. Need $m_{\nu}>2~{\rm eV}$
Natarajan & Zhao 2008	6 HST clusters				Х		MOND + low mass ν disfavored.
Bradac et al 2008	MACS J0025.4+1222				Х		DM favored
White & Kochanek 2001	VIRMOS/ DESCART			х			GR ok Yukawa-type
Dore et al 2007	CFHTLS +SDSS			Х			GR ok Yukawa-type or Uzan & Bernardeau (2001)
Wang et al 2008	CTIO			х			DGP disfavored
Thomas et al 2008	CFHTLS			Х			$ \begin{array}{l} {\rm GR} \ (\alpha=0) \ {\rm ok}, \\ {\rm DGP} \ (\alpha=1) \ {\rm rejected} \\ {H^2} - \frac{{H^\alpha}}{{r_c^{2-\alpha}}} = \frac{8\pi G}{3} \\ {r_c} = (1-\Omega_m)^{\frac{1}{2-\alpha}} {H_o^{-1}} \end{array} $

SL = Strong Lensing

WL = Weak Lensing

G-G WL = Galaxy-Galaxy Lensing

FP = Test predictions for Fundamental Plane

Testing gravity with gravitational lensing

- All data agree with GR predictions (with DM,DE)
- Overall : standard MOND/TeVeS models not favored in most cases

- However, not really conclusive, so far:
 - analyses not always based on a fully internal consistency ground,
 - analyses depend on the choice of the parameterisation of gravity models,
 - analyses of same data do not always lead to same conclusions,
 - all may agree with data within a factor of 2... need to improve accuracy,
 - astrophysical systematics (like environment), technical systematics or contaminations in data not always taken into account,

What next?

Problems

Weak lensing (serious) issues:

- shape measurement: hard,still unstable results: on going CFHTLS surveys focus on that problem
- intrinsic alignement and other astrophysical systematics: serious but no show stoppers, need redshifts
- ... outstanding collaborative works done over the past 3 years ...

Task forces set up since 2007

Weak lensing (serious) issues:

- ... outstanding collaborative works done over the past 3 years:
- STEP(s) team (C. Heymans, R. Massey, L. van Waerbeke, et al),
- GREAT08 team (S. Bridle et al),
- DUEL team (FP6 EC RTN) (Bonn, Edinburgh, Paris, Heidelberg, Munchen, Naples,

Vancouver+UVic),

- CFHTLS Systematic collaboration team (L. van Waerbeke, C. Heymans, Hoekstra, Erben, Mellier et al),
- EUCLID WL Team (A. Réfrégier, A. Amara, et al)

Cosmic shear = shape + redshift of sources

- Different way of processing the native images
 - Better stacks, no more stacks?
 - CCD by CCD instead of full detector at once?
- New tools to analyse the PSF, deconvolve and measure shapes of sources (model fitting?)
- Cosmic shear surveys are big and demand collaborations and huge resources:
 - Imaging surveys
 - Visible + NIR Photometric surveys
 - Spectroscopic survey
 - Very wide fields needed
 - Medium deep surveys needed...

Cosmic shear = shape + redshift of sources

Medium deep surveys needed...

- Need large number density of lensed galaxies
- Need "spectroscopable" samples
- Need photo-z-able galaxies (high S/N NIR signal)
- Need galaxies with well sampled size: pixel and PSF issues
- Very distant has complex morphology, increases the intrinsic ellipticity noise contribution

Goals of next generation surveys

Weak lensing is primarily a probe of gravity, and a unique probe of the dark universe

- Exploration of Dark Matter distribution:
 - Amplitude and shape of P(k),
 - Properties of haloes, tests against numerical simulations,
 - mass reconstruction with strong and weak lensing;
- Exploration of the growth, and the growth rate of structure P(k,z);
 - History of structure formation
 - Test of General Relativity;
 - Dark energy w(z) : properties or tests of models (schimd et et 2007);
 - Mass of neutrinos
 - Non-gaussianity;

To test gravity, next generation surveys must be BIG

				SURVEY	AREA	MEDIAN	SOURCE	РНОТО-Z
SURVEY	SIGNIFICANCE	BAYES	ASSESSMENT		(deg ²)	REDSHIFT	DENSITY	ERROR
	OF TEST	FACTOR					(#/arcmin ²)	σ(7)
	(#σ)	ln B					()	$\mathbf{v}_{\mathbf{z}}(\mathbf{v})$
DES+Planck+RAO	3.5	1.28	significant	DES	5000	0.80	10	0.050(1+z)
+SN	2.2	0.56	inconclusive	PS1	30,000	0.75	5	0.060(1+z)
DES+Planck	0.7	0.54	inconclusive	WL _{NaxtGan}	20,000	0.90	35	0.025(1+z)
DES				Nexiden				
				g F	(0			-
	2.0	2 70	C.	00	200		+Planck	
PS1+Planck+BAO+	2.9	3.78 2.04	Strong	- E	al. (WLNextG	en	3
SN PS1+Planck	2.0	0.62	inconclusive	_ F	et			
PS1	1.0	0.02	mediciusive	0	in in ite		Planck	
				7	<u> </u>		PStria	Dunck
				m F	/:		DE	S+Planck
WL _{NextGen} +Planck+	10.6	63.0	decisive	4 9 F		11-1		de sister =
BAU+SN WI +Planck	10.2	52.2	decisive	- · E.	·/····	£.,		decisive
WL _{NextGen} I tunck	5.4	11.0	decisive	<u>A-</u>		/		strong
,, • • NextGen					$\sum_{i=1}^{n} f_{i}$			significant
				Ē	1			inconclusive
				E	146			3
				 [11			
				οĿ				
				0		0.2	0.4	0.6
Heavens et a	l 2007			~~				

GR : $\gamma = 0.55$; DGP : $\gamma = 0.68$ ° γ

On going and future weak lensing surveys

Survey	Telescope	Sky coverage	Filters	depth
Deep Lens Survey	CTIO	7x4 deg ²	BVRz'	R=25
CFHTLS-Wide	CFHT	170 <i>deg</i> ²	ugriz	1 _{AB} =24.5
RCS2	CFHT	$1000 \ deg^2$	grz	<i>t_{AB}=22.5</i>
KIDS	VST	1500 <i>deg</i> ²	ugriz	<i>t_{AB}=22.9</i>
Pan-STARRS	PS1	30000 deg ²	grizy	1 _{AB} =24
VIKING	VISTA	1500 <i>deg</i> ²	zYJHK	1 _{AB} =22.9
Dark Energy Survey	CTIO	5000 <i>deg</i> ²	griz	<i>i_{AB}=24.5</i>
HyperCam	SUBARU	$\sim 2000 \text{ deg}\bar{2}?$	TBD	TBD
JDEM	Space	~20000 deg2 ?	Vis. + NIR ?	TBD
LSST	6m ground	20000 <i>deg</i> ²	Narrow band (0.35-1.2)	1 _{AB} =27
EUCLID	Space	20000 <i>deg</i> ²	(R+I+Y)+J,H,(K)	<i>t_{AB}=25.5</i>
Munshi et al 2008				

Unveiling the dark lensed universe will still demand some work...

Summary

Weak lensing demonstrated

- it works up to ~100 Mpc scales: can be used where linear theory applies,
- it provides competitive constraints on the dark matter power spectrum:

Cosmic shear 2005: $\sigma_8 = 0.80$ +/- 0.15 ; Cosmic shear 2009: $\sigma_8 = 0.80$ +/- 0.05

- it provides promising results on tests of gravity and tomograph
- Much more to come (KIDS, DES, HSC, JWST, EUCLID, JDEM, LSST) ... but...
 - weak lensing is a very difficult, not fully matured, technique,
 - measuring extremely weak lensing is still a challenge,
 - still issues on astrophysical systematics,
 - photometric redshifts are needed for all galaxies

• higher order statistics even weaker, but most promising: non-gaussinaity, breaking degeneracies

growing interest for <u>cosmic magnification</u> (Ménard et al 2008, Hildebrandt et al 2009) ... complement cosmic shear... should be explored in details
Cosmic magnification in SDSS

 Correlation between bright QSOs and foreground galaxies (lenses) in Large Scale Structure: QSOs get brighter

• 85000 QSOs at z>1 ; 20 10⁶ galaxies at z~0.3

Thank you

Testing systematics and reliability of cosmic shear signal:

Gravitational lensing does not produce B-modes (Curl=0)

