

Results from the SDSS-II Supernova Survey

R.Kessler University of Chicago Sep 14, 2009 Paris-Berkeley Dark-Energy Workshop

Outline

- Overview of SDSS-II Survey
- Analysis with existing Light curve fitters: MLCS & SALT2
- Calibration
- Results & Comparisons (arXiv:0908.4274)
- Systematics Issues
- Future Prospects

Hubble Diagram Basics

Expansion history depends on Ω_{Λ} and Ω_{M}

Hubble Diagram Basics

The SDSS-II SN Team

The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary AJ 135, 338 (2008)

Joshua A. Frieman,^{1,2,3} Bruce Bassett,^{4,5} Andrew Becker,⁶ Changsu Choi,⁷ David Cinabro,⁸ Fritz DeJongh,¹ Darren L. Depov,⁹ Ben Dilday,^{2,10} Mamoru Doi,¹¹ Peter M. Garnavich,¹² Craig J. Hogan,⁶ Jon Holtzman,¹³ Myungshin Im,⁷ Saurabh Jha,¹⁴ Richard Kessler,^{2,15} Kohki Konishi,¹⁶ Hubert Lampeitl,¹⁷ John Marriner,¹ Jennifer L. Marshall,⁹ David McGinnis,¹ Gajus Miknaitis,¹ Robert C. Nichol,¹⁸ Jose Luis Prieto,⁹ Adam G. Riess,^{17,19} Michael W. Richmond,²⁰ Roger Romani,¹⁴ Masao Sako,²¹ Donald P. Schneider,²² Mathew Smith,¹⁸ Naohiro Takanashi,¹¹ Kouichi Tokita,¹¹ Kurt van der Heyden,⁵ Naoki Yasuda,¹⁶ Chen Zheng,¹⁴ Jennifer Adelman-McCarthy,¹ James Annis,¹ Roberto J. Assef,⁹ John Barentine,^{23,24} Ralf Bender,^{25,26} Roger D. Blandford,¹⁴ William N. Boroski,¹ Malcolm Bremer,²⁷ Howard Brewington,²⁴ Chris A. Collins,²⁸ Arlin Crotts,²⁹ Jack Dembicky,²⁴ Jason Eastman,⁹ Alastair Edge,³⁰ Edmond Edmondson,¹⁸ Edward Elson,⁵ Michael E. Evler,³¹ Alexei V. Filippenko,³² Ryan J. Foley,³² Stephan Frank,⁹ Ariel Goobar,³³ Tina Gueth,¹³ James E. Gunn,³⁴ Michael Harvanek,^{24,35} Ulrich Hopp,^{25,26} Yutaka Ihara,¹¹ Želko Ivezić,⁶ Steven Kahn,¹⁴ Jared Kaplan,³⁶ Stephen Kent,^{1,3} William Ketzeback,²⁴ Scott J. Kleinman,^{24,37} Wolfram Kollatschny,³⁸ Richard G. Kron,³ Jurek Krzesiński,^{24,39} Dennis Lamenti,⁴⁰ Giorgos Leloudas,⁴¹ Huan Lin,¹ Daniel C. Long,²⁴ John Lucey,³⁰ Robert H. Lupton,³⁴ Elena Malanushenko,²⁴ Viktor Malanushenko,²⁴ Russet J. McMillan,²⁴ Javier Mendez,⁴² Christopher W. Morgan,^{9,31} Tomoki Morokuma,^{11,43} Atsuko Nitta,^{24,44} Linda Ostman,³³ Kaike Pan,²⁴ Constance M. Rockosi,⁴⁵ A. Kathy Romer,⁴⁶ Pilar Ruiz-Lapuente,⁴² Gabrelle Saurage,²⁴ Katie Schlesinger,⁹ Stephanie A. Snedden,²⁴ Jesper Sollerman,^{41,47} Chris Stoughton,¹ Maximilian Stritzinger,⁴¹ Mark SubbaRao,³ Douglas Tucker,¹ Petri Vaisanen,⁵ Linda C. Watson,⁹ Shannon Watters,²⁴ J. Craig Wheeler,²³ Brian Yanny,¹ and Donald York^{3,15}

 $^1\mathrm{Center}$ for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510.

 $^2\mathrm{Kavli}$ Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue Chicago, IL 60637.

 $^3\mathrm{Department}$ of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637.

 $^4\mathrm{Department}$ of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa.

⁵South African Astronomical Observatory, P.O. Box 9, Observatory 7935, South Africa.

⁶Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195.

⁷Department of Astronomy, Seoul National University, Seoul, South Korea.

⁸Department of Physics, Wayne State University, Detroit, MI 48202.

 $^9\mathrm{Department}$ of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173.

¹⁰Department of Physics, University of Chicago, Chicago, IL 60637.

¹¹Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1, Osawa, Mitaka, Tokyo 181-0015, Japan.

¹²University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670.

¹³Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003.

¹⁴Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, Stanford, CA 94305-4060.

¹⁵Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637.

¹⁶Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582, Japan.

¹⁷Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218.

¹⁸Institute of Cosmology and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth PO1 2EG, UK.

¹⁹Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218.

²⁰Physics Department, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603.

²¹Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104.

²²Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory,

SDSS-II Supernova Survey: Sep 1 - Nov 30, 2005-2007 (1 of 3 SDSS-II projects for 2005-2008)

GOAL:

Few hundred high-quality type Ia SNe lightcurves in redshift range 0.05-0.4

SAMPLING: ~300 sq deg in ugriz (3 million galaxies every two nights)

SPECTROSCOPIC FOLLOW-UP: HET, ARC 3.5m, MDM, Subaru, WHT, Keck, NTT, KPNO, NOT, SALT, Magellan, TNG

SDSS Data Flow One full night collects 800 fields (ugriz per field) ⇔ 200 GB

Advances in computing & software allows searching 150 sq deg in less than 24 hours.

one raw g-field (0.2 sq-deg)

SDSS Data Flow One full night collects 800 fields (ugriz per field) ⇔ 200 GB

one raw g-field (0.2 sq-deg)

SDSS-II SN Stats (3 seasons)

- Spectroscopic confirmation for ~500 SNe Ia
- Host-galaxy redshifts for additional ~300 photometrically ID'ed SNe Ia
- ~1700 photometrically ID'ed SN Ia: will get hostgalaxy redshifts from SDSS-III (few % of fibers)
- This talk: cosmology results using 103 SNe (after cuts) from first season (Fall 2005).
- 78 Spectroscopically confirmed non-la (58 Type II, 8 lb, 12 lc)

SDSS gri Light Curves: <N_{measure} > = 48 per SN

SDSS-II Survey Cadence

11

Redshift Distribution (SDSS SNe fill redshift gap: 0.05 - 0.4)

Analysis with available light curve fitters:

• MLCS:

 assumes color variations are ONLY from host-galaxy extinction.
 Prior enforces positive extinction: A_V > 0

• SALT2:

 color variations are not untangled from SN and host-galaxy extinction

- no prior (bluer is always brighter)

Analysis with available light curve fitters:

- MLCS (Jha,Riess,Kirshner 2007): same method, but re-written with significant improvements to implementation
- SALT2 (Guy et al.,2007): use code as-is, but retrained spectral surfaces with our UBVRI filter shifts for nearby sample (instead of those in Astier 2006)

Changes in MLCS Implementation (no changes in training or philosophy)

- Host galaxy dust properties are measured with SDSS Sne (instead of assumptions)
- Account for spectroscopic efficiency in fitting prior
 big effect at high-z end of each survey
- Fit in flux (not mag)

Measurement of Dust Properties with SDSS-II

PROBLEM: Spec-confirmed SN Ia sample has large (spectroscopic) inefficiency MLCS framework

Confirmed SNe on average are **BLUER and BRIGHTER** than parent population \rightarrow biased dust properties (R_V, A_V profile)

16

Measurement of Dust Properties with SDSS-II

PROBLEM: Spec-confirmed SN Ia sample has large (spectroscopic) inefficiency. SOLUTION: include photometric SNe Ia with host-galaxy redshift: 155 with z < 0.3

Dust Properties with SDSS-II

 $R_V = 2.2 \pm 0.5$ in simulation matches observed colors R_v = 3.1 in simulation => Poor match

18

Dust Properties with SDSS-II

RV = 2.2 ± 0.5 in simulation matches observed colors R_V = 3.1 in simulation => Poor match Exponential A_V profile in sim matches fit- A_V profile in data

A_V with Flat Prior

 $A_{V} > 0$ generated in simulation \rightarrow describes fitted $A_V < 0$ with no prior \rightarrow consistent with MLCS interp of SNe bluer than template

A_v with Flat Prior

 $A_{V} > 0$ generated in simulation \rightarrow describes fitted $A_V < 0$ with no prior \rightarrow consistent with MLCS interp of SNe bluer than template

Impact of MLCS Changes (dw ~ 0.3 compared to WV07)

Wood-Vasey Et al, 2007: previous MLCS - based analysis from ESSENCE collaboration

Calibration

- Use **BD+17** as primary refernce (crosscheck with Vega is consistent)
- SDSS AB offsets from HST standard solar analogs
- Nearby UBVRI: Bessell90 filter response + color transformation determined from Landolt standards with HST spectra (App B of 0908.4274)
- Crosscheck with shifted UBVRI filters is consistent (shift defined to have zero color transformation)

Calibration Details

Table 1: AB offsets and central wavelength uncertainties for the SDSS filters.

		AB offset (mag) and	uncertainty (Å) on
AR	SDSS filter	its uncertainty ^a	central wavelength
	u	-0.037 ± 0.014	8
offsets	g	$+0.024 \pm 0.009$	7
	r	$+0.005 \pm 0.009$	16
	i	$+0.018 \pm 0.009$	25
	z	$+0.016 \pm 0.010$	38

 $^a\mathrm{Errors}$ account for uncertainties in the central wavelengths of the SDSS filters.

	filter shift in Å for:		
Bessell	Bessell filter	HST standards	Astier et al. (2006)
filter	U B	$\begin{array}{c} +13\pm4\\ -15\pm4\end{array}$	-41
shifts	V R	$+12 \pm 6 + 7 \pm 9$	$-27 \\ -21$
	Ι	-45 ± 21	-25

25

Combine SDSS SNe with Published Samples

27

Cosmology Fit

- Priors: BAO, CMB, flat universe
- Float w and $\Omega_{\mathbf{M}}$

68% + 95% stat-error contours (MLCS)

20

Translate SALT2 SED surface (λ vs. Trest) into "SALTY" MLCS model parameters; i.e., train MLCS with SALT2 SED surface. UV region is most

discrepant

SALT2 vs. Nominal MLCS

SALT2 vs. Nominal MLCS

vs. SALTY MLCS

- Using SALTY-MLCS and removing A_V prior (i.e, allow A_V <0) → w shifts by –0.2 and agrees with SALT2 result.
- Either change alone makes small change in w: need both changes
- This test does not suggest that either method is right or wrong; only illustrates sources of discrepancy.

Systematics Issues

Large U-band Systematic for SDSS SNe

Source of largest systematic error.

Large U-band Systematic for SDSS SNe

Large U-band Systematic for SDSS SNe

UV-region

- Evidence points to problem with rest-frame UV in Nearby (z < 0.1) sample.
- MLCS is more sensitive (than SALT-II) to nearby UV because MLCS uses *only* nearby SNe for training.
- SDSS SN sample ideally suited to study restframe UV region:
- If the second se

SALT-II redshift dependence Intrinsic SN mag = M + α(stretch) – β(color)

Fit in separate redshift bins with cosmology (w, Ω_M) fixed to values from global fit.

40

Hubble Bubble ?

Hubble Bubble ?

42

Hubble Bubble?

$\delta W_{syst} = .03 - .06$

Summary

 Cosmology analysis of 1st season SDSS SNe Ia is finished;

unresolved issues -> systematic errors

- "improved" MLCS and "standard" SALT-II give discrepant results for w: traced to UV model and assumption of color variations.
- UV model problem very clear with SDSS SNe; dominates systematic error. SDSS data ideal to study UV region.
- Still working to obtain a nearly "complete" SDSS SN sample that includes photometrically ID'ed SNe with host-galaxy redshifts (from SDSS-III).