▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

SNLS 3rd Year Cosmological Results

Julien GUY for the SNLS Collaboration julien.guy@lpnhe.in2p3.fr

LPNHE - IN2P3 - CNRS - Universités Paris 6 et Paris 7

Paris-Berkeley workshop, Sept. 2009

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

SNLS

- Survey description
- SNLS 1st year results

2 SNLS 3rd year analysis

- Photometric calibration
- Light-curve fitters
- Hubble diagram
- Constraints on w

The SNLS Collaboration

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

SNLS: A Large Photometric Survey ...

\sim 300h / year on a 3.6-m

CFHT @ Hawaii

Wide Field Camera

- Megacam (CEA/DAPNIA)
- 1 deg², 36 2k×4k CCDs
- Good PSF sampling 1 pix = 0.2"
- Excellent image quality: 0.7" (FWHM)

Rolling search mode

- Component of the CFHTLS survey
- 40 nights / year during 5 years
- Four 1-deg² fields
- repeated observations (3-4 nights)
- in 4 bands (griz)
- queue observing (minimize impact of bad weather)

SNLS 3rd year analysis

SNLS: A Large Photometric Survey ...

.. Operated in Rolling Search Mode

... and a Large Spectroscopic Survey

Goals

- spectral identification of SNe Ia (z < 1)
- redshift determination (host galaxy lines)
- complementary programs
 - detailed studies of SNe Ia

Telescopes

- VLT large program (120h / year)
- Gemini (120h / year)
- Keck (30h / year)

(Howell et al, 2005 - ApJ 634, 1190)

Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

May 2008					
Telescope	SNIa (/?)	SNII (/?)	Total SN (/?)	Other	Total
Gemini	161	16	235	0	235
Keck	106	26	197	7	204
VLT	182	28	309	12	321
Total	449	70	741	19	760

\sim 450 Identified Type Ia Supernovae now on disk \sim similar number with photometric identification

Survey ended in June 2008

Statistics

Public list of candidates: http://legacy.astro.utoronto.ca

Constraints on *w* Astier et al, 2006

- 44 nearby SNe Ia from the literature, 71 distant SNe Ia.
- BAO = Baryon Accoustic Peak (Eisenstein, 2005)
- 68.3, 95.5 and 99.7 CL

fit	parameters (stat only)
$(\Omega_m, \Omega_\Lambda)$	$(0.31 \pm 0.21, 0.80 \pm 0.31)$
$(\Omega_m - \Omega_\Lambda, \Omega_m + \Omega_\Lambda)$	$(-0.49 \pm 0.12, 1.11 \pm 0.52)$
$(\Omega_m, \Omega_\Lambda)$ flat	$\Omega_m = 0.263 \pm 0.037$
$(\Omega_m, \Omega_\Lambda) + BAO$	$(0.271 \pm 0.020, 0.751 \pm 0.082)$
(Ω_m, w) +BAO	$(0.271 \pm 0.021, -1.023 \pm 0.087)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

SNLS

Source	$\sigma(\Omega_m)$	$\sigma(\Omega_{tot})$	$\sigma(w)$	$\sigma(\Omega_m)$	$\sigma(w)$
	(flat)			(with	BAO)
Zero-points	0.024	0.51	0.05	0.004	0.040
Vega spectrum	0.012	0.02	0.03	0.003	0.024
Filter bandpasses	0.007	0.01	0.02	0.002	0.013
Malmquist bias	0.016	0.22	0.03	0.004	0.025
Sum (sys)	0.032	0.55	0.07	0.007	0.054
Sum (stat)	0.042	0.53	0.10	0.021	0.090

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Outline

SNLS

- Survey description
- SNLS 1st year results

2 SNLS 3rd year analysis

- Photometric calibration
- Light-curve fitters
- Hubble diagram
- Constraints on w

SNLS 3 Year Analysis

SNLS

- statistics $\times 3.5~71~\rightarrow~\sim 250$
- Independant analyses (Fr, Ca), being carefully cross-checked
- Improved Photometric calibration
 - Better control of the Megacam array uniformity
 - 3-year monitoring of the same fields
- Improved Supernova modeling trained on the SNLS data
 - Two independant lightcurve fitters: SALT2 (Guy et al, 2007), SIFTO (Conley et al, 2008).
 - Allow to use the bluer part of the spectrum (z > 0.8)
- Detailed studies of the SN properties w.r.t. host galaxy type (elliptical \sim old, vs spiral \sim new)
 - tests for evolution of the SN properties with redshift
- Systematics included in the cosmological fits

Photometric Calibration (Regnault et al, 2009) Uniformity of the Photometric Response

- Wide field cameras have an intrinsically non-flat photometric response $\sim 10\%$ from center to edge.
- Careful mapping of it using dithered observations.
- Residual non-uniformities $\sim 1\%$.

Photometric Calibration Filter non-uniformities

- Intrinsic filter non-uniformities (up to $\sim 5nm$).
- Mapped with dithered observations.
- Must be accounted for in the lightcurve fits.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Photometric Calibration

Filter non-uniformities: consistency with manufacturer measurements

- Filled circles : derived from dithered observations
- Open circles : synthetic, using stellar spectral library and manufacturer measurement of filter transmission

- Magnitude systems do not define their physical flux scale
- We rely on a fundamental flux standard, with (1) a known spectrum and (2) known magnitudes, in order to convert magnitudes into physical fluxes

$$\Phi = 10^{-0.4(m-m_{ref})} \times \int S_{ref}(\lambda) T(\lambda) d\lambda$$

- The HST has selected 3 pure hydrogen white dwarfs as primary standards. Models of these stars' spectra were used to calibrate the HST instruments.
- This calibration was then propagated to a larger network of secondary HST standards. We use one of them, BD +17 4708 as our fundamental flux standard.

$\begin{array}{l} Photometric \ Calibration \\ {\tt Landolt} \rightarrow {\tt SNLS} \end{array}$

Photometric Calibration Tertiary stars mags: aperture \rightarrow PSF

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Photometric Calibration Uncertainty Budget

	g	r	i	Ζ
Zero Points (stat)	± 0.002	± 0.002	± 0.002	± 0.005
Aperture corr.	< 0.001	< 0.001	< 0.001	< 0.001
Background sub	< 0.001	< 0.001	± 0.005	< 0.001
Shutter	± 0.002	± 0.002	± 0.002	± 0.002
Linearity	< 0.001	< 0.001	< 0.001	< 0.001
2nd order airmass corr.	< 0.001	< 0.001	< 0.001	< 0.001
Grid reference colors	< 0.001	< 0.001	< 0.001	< 0.001
Grid color corrs	< 0.001	< 0.001	± 0.002	< 0.001
Landolt catalogs	± 0.001	± 0.001	± 0.001	± 0.002
Magnitudes of BD $+17$	± 0.002	± 0.004	± 0.003	± 0.018
Transfer to SNe	± 0.002	± 0.002	± 0.002	± 0.002
Total	± 0.005	± 0.006	± 0.007	± 0.019

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Outline

SNLS

- Survey description
- SNLS 1st year results

2 SNLS 3rd year analysis

- Photometric calibration
- Light-curve fitters
- Hubble diagram
- Constraints on w

Measuring Luminosity Distances with SNe Ia

Distance modulus $\mu = 5 \log_{10} D_L$ estimated using apparent magnitude in a rest-frame (or redshifted) filter + correction factors based on the shape of the SN light curve and its color

$$\mu_B = m_B^{\star} - \mathcal{M}_B + \alpha \times shape - \beta \times color$$

 \mathcal{M}_B , α and β fitted at the same time as cosmology.

\neq MCLS2k2

•
$$a\Delta + b\Delta^2$$
 ($\Delta \equiv shape$)

• $\beta \times color \rightarrow R_B \times E(B - V)$: color excess is dust reddening

Measuring Luminosity Distances with SNe Ia

- *m*^{*}_B, *shape* and *color* determined from observed SNe light curves in a limited set of filters
- Requires a model of the SN spectral evolution to correct for redshift effect (*k-corrections*)

$$\frac{f(z_1, T_{rest})}{f(z_2, T_{rest})} = \left(\frac{d_L(z_2)}{d_L(z_1)}\right)^2$$

Light Curve Fitters

• Goal:

- flux ratio of SNe at different z
- lightcurve shape parameter
- SN restframe color

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Tool: Empirical model of the SN Ia spectral sequence
 - physical simulations not precise enough
 - model trained on a large sample of lightcurves and spectra
 - accounts for the diversity of SNe Ia

SALT2 & SiFTO (Guy et al, 2007), (Conley et al, 2008)

> Two methods to derive m_B^{\star} , color, shape. Differences \rightarrow systematics

SALT2

- Empirical model of the Spectral Sequence \simeq PCA
 - $F = x_0$
 - $\times [M_0(p,\lambda) + x_1 M_1(p,\lambda)]$
 - $\times \exp(c \ CL(\lambda))$

SiFTO

- SN la spectral sequence from (Hsiao, 2007)
- Pure stretching with time : $M(p, \lambda, s) = M(p/(s-1), \lambda)$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- $s \rightarrow s(\lambda)$
- Color relations

SALT2 & SiFTO

SNLS

- Lightcurve fit separate from distance estimate (relative amplitude vs time and λ)
- Both trained using nearby and SNLS lightcurves :
 - More SNe with better calibration
 - Permits modeling of near UV $\lambda \in$ [300, 400] nm

\neq MCLS2k2

- Directly a distance estimator: need for the distances to SNe in training sample
- Trained on low-z SNe only: sensitive to U-band calibration (conv. to flux)

SALT2 & SIFTO Color law(λ) vs color relations

Whatever R_V , CCM law inconsistent with SALT2 color

Agreement when using same assumption for residual scatter

SiFTO uses color relations $(B - V) = a \times (U - B) + b \times (s - 1) + c$

Uncertainties matter!

▲ロト ▲圖 ト ▲ 国 ト ▲ 国 ト の Q ()

Uncertainties matter!

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - の久(で)

Estimating the residual scatter

Not all the SN variability accounted for by models. Residual scatter \rightarrow parameter uncertainties \rightarrow linear fits like color relations, α , β

- Covariance between lightcurves ignored
- Uncorrelated noise
- + global lightcurve amplitude uncertainty (color dispersion)
 - estimated using SALT2 residuals
 - transfered to SiFTO for the fit of color relations

SALT2 / SiFTO Consistency check

Difference of rest-frame (B - V) color from independent fit of $r_m i_m$ and $g_m r_m$ lightcurves.

SiFTO ∆(B-V)

 $\begin{array}{l} \mbox{Same spirit as Kessler (2009), Fig. 40:} \\ \mbox{Marginally consistent with SNLS-1 and SDSS calibration systematics} \\ \mbox{of $\simeq 0.01$ in each band.} \\ \mbox{\sigma}(\mu) \lesssim \sqrt{2 \times (0.01^2 + \beta^2 \times 2 \times 0.01^2)} \simeq 0.06. \end{array}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

SALT2/SiFTO Comparison of rest-frame magnitudes

Systematics on rest-frame magnitudes $\simeq 0.02$. Explained by differences of spectral sequences Hsiao (2007) vs SALT2 despite "mangling". (red line)

SALT2/SiFTO Residuals to Hubble diagram

Equivalent precision

Light Curve Fitters Propagation of uncertainties

- Statistical uncertainties of the models after training.
 - SALT2: model covariance matrix (4000x4000) \rightarrow covariance matrix of distances (C_{μ})
 - SiFTO: stat. uncertainties on color relations $ightarrow {\it C}_{\mu}$
- Calibration uncertainties

Light Curve Fitters Photometry + calibration + fitter uncertainties

Uncertainties on $\langle \mu \rangle_{\Delta z=0.2}$

- statistical uncertainty
- calibration
- finite training sample
- residual scatter model
- Light curve fitter $\simeq 0.02$

External data sample (Conley et al, in prep)

low redshift

- Hamuy et al. (1996)
- Riess et al. (1999)
- Jha et al. (2006)
- Hicken et al. (2009)
- +few others

Not included here

SDSS

• high redshift SNe from Riess et al. (2007)

Systematic uncertainties

- Low redshift SNe Malmquist bias $\simeq 0.01$
- Calibration 0.05(U) 0.015(B,V,R)
- Filter transmission 20Å (U) 7Å (BV) 25Å (R)

Hubble diagram

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣ぬ⊙

Hubble diagram

Residuals SNLS-3, preliminary

Hubble diagram

000000000

SNLS 3rd year analysis

・ロト ・聞ト ・ヨト ・ヨト

Constraints in $\Omega_M w$ plane, for $\Omega_k = 0$ stat. only; comparison SNLS-1 SNLS-3

SNLS-1: 1st year results, Astier et al. (2006), WMAP5: Komatsu et al. (2009),

BAO (Baryon Acoustic Oscillations): Eisenstein et al. (2005)

000000000

SNLS 3rd year analysis

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Constraints in $\Omega_M w$ plane, for $\Omega_k = 0$ stat. only; comparison SALT2 SIFTO

BAO (Baryon Acoustic Oscillations): Eisenstein et al. (2005)

SNLS 3rd year analysis

Constraints in $\Omega_M w$ plane, for $\Omega_k = 0$ stat.+ SNLS calibration systematics

WMAP5: Komatsu et al. (2009),

BAO (Baryon Acoustic Oscillations): Eisenstein et al. (2005)

SNLS 3rd year analysis

Constraints in $\Omega_M w$ plane, for $\Omega_k = 0$ stat.+ all calibration systematics

 $\sigma(U) = 0.05$

 $\sigma(B, V, R) = 0.015$

PRELIMINARY UNCERTAINTIES (some cross-check needed)

Statistical	0.047
SNLS calibration	0.057
Low-z calibration	0.035
Low-z selection bias	0.020
Lightcurve fitters	0.025
Total sys	0.069
Stat + sys	0.084

Missing : lightcurve fitter stat. uncertainties, contamination bias, lensing, inter-galactic dust, dust extinction evolution, progenitor age ... Some more numbers :

- low z SNe $\delta m = 0.01 \rightarrow \delta w = 0.018$
- β evolution $\sigma(\beta(z=1) \beta(z=0)) = 0.5 \rightarrow \sigma w = 0.035$

Conclusions

• Largest homogeneous high-z sample \sim 240 SNe Ia

 $w = -XX \pm 0.047(stat) \pm 0.069(sys)$

• SNLS 3-year papers

- calibration (Regnault et al, 2009)
- photometric properties (Guy et al, 2009, in prep)
- hubble diagram with SNe Ia (Conley et al, 2009, in prep)
- cosmological constraints (Sullivan et al, 2009, in prep)
- VLT spectroscopy (Balland et al, 2009, submitted)
- ...
- Future: combined SNLS + SDSS analysis (same statistical uncertainty, lower systematics, implies a thorough cross calibration of both surveys)