### Non-standard reddening law from extinction by *circumstellar* dust



Ariel Goobar The Oskar Klein Center Stockholm University



Green Yellow Blue X-ray (Hot gas with millions of degree)

Red

Infrared (Circumstellar/ Synthesized dust)

White Optical (Foreground/ background stars) SN1572 (Tycho's)

# The case for CSM around active SNIa



- Theoretical predictions: in SD-models, mass transfer from companion + expelled material from WD surface in excess of critical accretion rate (Hachisu et al, 96,99a,b,08), prior to SN explosion.
- Spectroscopic evidence for shell of CSM (~10<sup>16</sup>-10<sup>17</sup>cm) for 3 near-by SNIa. <u>Claim:</u> changing sodium absorption due to changing ionization of CSM, modulated by SN radiation; but Ca-atoms locked up in dust grains.

**2006X** (Patat et al.); E(B-V)=1.42 0.04, **R<sub>v</sub>=1.48 0.06** (Wang et al)

1999cl (Blondin et al.),

E(B-V)~1.1, **R<sub>v</sub>~1.8** 

**2007le** (Simon et al.), E(B-V)=0.27, **R**<sub>v</sub>=**2.56** 0.22





# Multiple scattering in CS dusty medium



Observed colors after the semi-diffusive shell will depend on: •Wavelength dependent cross-sections, albedo and scattering angles •Dust density and shell volume



AG, ApJ 2008 see also Wang 05

#### **Run a Monte Carlo!**

Use dust parameters for MW and LMC by: *Draine ApJ 2003, Weingartner & Draine ApJ 2001* (also SMC dust , but mostly absorption (not scattering) at optical wavelengths)

### **Optical depth: one realization**





4

### Scattering vs wavelength (LMC)





#### **Run Monte Carlo simulation**





AG, 2008

### **Differential extinction function differs, especially towards UV**





Cardelli law does not fit entire optical windows, for any R<sub>v</sub>

#### **Power-law**





#### **Carnegie Supernova Project:** reddest SNIa (Folatelli et al, priv. com)





9













days in rest frame







days in rest frame







days in rest frame

 $R_{cs} = 5 \cdot 10^{18} \text{ cm}$ 





days in rest frame



- Local effects, such as interaction with circumstellar dust, as claimed for 3 near-by SNIa, could explain low  $R_v /\beta$  + introduce lightcurve shape variations.
- Question: If main reason for R<sub>v</sub><3.1 is local, why is there so little interstellar extinction?
- Restframe\_near-IR observations least affected by dust, combined with optical data are critical.
- Predictions:
- 1. Measured color excess should change with SN epoch!
- 2. LC peaks and late time flux in various bands correlate with shape and color excess (related to shell size in the model)
- **3. Dust emission in far-IR (Apex program approved, but need reddened SN really close!)**



#### **Extra material**

#### **Dust emissivity**







# Global fit to minimize color dispersion in low-z SNIa data





# Multiple scattering in CS dusty medium



Observed colors after the semi-diffusive shell will depend on: •Wavelength dependent cross-sections, albedo and scattering angles •Dust density and shell volume



**Run a Monte Carlo!** 

Use dust parameters for MW and LMC by: *Draine ApJ 2003, Weingartner & Draine ApJ 2001* (also SMC dust , but mostly absorption (not scattering) at optical wavelengths)

AG, ApJ 2008 see also Wang 05

# Lightcurve shape perturbations from CS-shell size?





days in rest frame

 $R_{cs} = 10^{16} - 5 \cdot 10^{18} \text{ cm}$ •Thin shell (0.05· $R_{cs}$ )