

Nearby

IPNL

N. Chotard

E. Gangler

G. Smadja

R. Pereira

LPNHE

S. Bongard

Yale

C. Baltay

R. Scalzo

D. Rabinowitz

S. Bailey

R. Pain

C. Wu

P. Antilogus

C. Buton

Y. Copin

Supernova

Factory

LBL G. Aldering M. Childress H. Fakhouri S. Loken S. Perlmutter

P. Nugent R. Thomas

K. Runge J. Zylberberg

CRAL E. Pecontal

CPPM C. Tao D. Fouchez

A New Paradigm

- Search at low redshift just like at high redshift
 - boost discovery rate
 - wide-field, impartial to presence of an associated galaxy
 - find better analogs to high-redshift environment
- Fully integrate photometry and spectroscopy
 - for photometry:
 - Eliminate K-corrections and S-corrections
 - Tackle dust extinction using more colors
 - Eliminate atmospheric dispersion degeneracies
 - for spectroscopy:
 - Spectroscopy for more SNe
 - Time series of spectra for each SN
 - Properly subtract host galaxy light
 - Eliminate effects of slit losses and atmospheric dispersion

Getting to the Physics with Spectroscopy

Luminosity Indicators

Abundance Tomography

Kinematics

Nearby Supernova Factory Search

SNe over 2π of the Sky

More than 1000 SNe in ~28 months of searching during 2005-2008

SNe over 2π of the Sky

624 SNe w/ spectroscopic types - mostly from the SuperNova Integral Field Spectrograph

UH88

SNIFS

396 SNfactory & 50 IAUC SNe Ia

We faced fire and brimstone to get the data!

Fire closes Palomar Observatory

Mag 6.7 earthquake hits Mauna Kea

Fire sweeps antenna site at North Peak

Now Several Paths to SN Hubble Diagram

Stretch-Color

$\mathcal{R}(\mathsf{SiSS}) ext{-}\mathsf{Color}$

Scale) 61

Bailey et al, 2009

$\mathcal{R}_{642/443}$ Handles Difficult Cases

Stretch-Color Hubble Diagram

Have We Seen the Double-Degenerates?

Environmental Clues and Constraints

Galaxy Luminosity

Optical fiber

Technique:

• Illuminate flat field screen with monochromatic laser light from a tunable laser, and take a spectral image at each λ .

• Deliver a fixed "dose" of light to the system, as measured by a NIST calibrated photodiode.

• Measuring the flatfield flux relative to that seen by the photodiode allows the measurement of the total system throughput, in situ, relative to the well-characterized diode.

Courtesy C. Stubbs

Second harmonic (532 nm) generator

Mixer (to 355 nm)

1.06 micron Nd:YAG pulsed laser

Tunable downconverer

) generator

OP

Work for the Coming Year

- SNIFS
 - Complete final references for 2005-2008 SNe
 - Follow-up of SNe Ia targeted by HST/STIS
 - Supplement current sample with other interesting SNe
 - Development of absolute color calibration system
- Cosmology analysis
 - Finalize flux calibration
 - Complete host galaxy redshifts
 - Finalize host subtraction pipeline
- Spectral analysis
 - Develop new/improved spectral luminosity indicators
 - Abundance tomography
 - Spectral temporal-luminosity model, $F(\lambda,t,s)$

Summary

- Several fundamentally different standardization methods have been demonstrated to work well using spectrophotometric data.
- New methods using spectrophotometry are showing significant improvement over imaging based methods.
- Type la population dominated by SNe standardizable to 6%.
- Highly-extincted SNe Ia can be standardized at optical wavelengths
 - more examples needed to break intrinsic color dust degeneracy
- Oddball SNe Ia and those in low-luminosity hosts help probe progenitor properties.
- Deeper understanding of SNe Ia for cosmology demands spectrophotometry

